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Abstract— A least-squares-matching technique is presented to analyze fully developed laminar fluid flow
and heat transfer in ducts of arbitrary cross-section. Forced convection heat transfer is considered under
constant axial heat-transfer rate with arbitrary peripheral thermal boundary conditions. As an application
of the method, flow and heat-transfer results are presented for the duct geometries of isosceles triangular,
rounded corner equilateral triangular, sine, rhombic and trapezoidal cross-sections. These numerical results
are discussed from a heat exchanger designer’s viewpoint.
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NOMENCLATURE

m X n matrix;
duct cross-sectional (flow) area;
dimensions as specified in Fig. 1;
a constant (pressure gradient parameter);
specific heat of fluid at constant pressure;
hydraulic diameter, 44,/P;
fluid pumping power defined by equation
(54);
Fanning friction factor for fully developed
laminar flow [dimensionless];
proportionality factor in Newton’s second
law of motion;
thermal boundary condition referring to
axially constant heat-transfer rate per unit
length with constant peripheral wall
temperature;
thermal boundary condition referring to
axially constant heat-transfer rate per unit
length with constant peripheral wall heat
flux;
convective heat-transfer coefficient for fully
developed laminar flow;
Colburn heat-transfer modulus, S¢tPr?/?
[dimensionless];
incremental pressure drop number,
Ap/(puZ/2g.)—f(4L/D,) [dimensionless];

momentum flux correction factor, defined
by equation (20);

kinetic energy correction factor, defined
by equation (21);
fluid thermal conductivity;
hydrodynamic entrance length;
dimensionless hydrodynamic entrance
length, L;,/Dy Re;
number of boundary points;
number of unknowns in velocity and
temperature problems;
outer normal and tangential coordinates at
a boundary point;
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Nu,

*
tw,max,

*
tw,mim

peripheral average Nusselt number, hD,/k
[dimensionless];

peripheral local Nusselt number
[dimensionless];

number of heat-transfer units, h4/Wc,
[dimensionless];

duct perimeter;

Householder reflection defined by equation
(58), used in Appendix and the section on
Golub’s method only;

fluid Prandtl number, uc,/k [dimensionless];
porosity {dimensionless];

peripheral average heat flux;

peripheral local heat flux;

Reynolds number, pu,, D,/ [dimensionless];
cylindrical polar coordinates;

Stanton number, hA,/Wc, [dimensionless];
temperature defined by equation (31);
temperature;

fluid temperature at the duct centroid;
fluid bulk mean temperature;

mean wall temperature defined by equation
(44);

maximum wall temperature

(v, max — L)/ (tw m—t.) [dimensionless];
minimum wall temperature

(ty,min— Lc)/(tw m—tc) [dimensionless];

fluid axial velocity for fully developed
laminar flow;

mean axial velocity, refer equation (19);
maximum axial velocity across the duct
cross-section;

fluid flow rate;

volume of the heat exchanger;

an n-vector;

an m-vector;

, cartesian coordinates;

Euclidean norm of a vector (x? +...+ x2)*/%;
distance of a centroid of the duct
cross-section measured from the base, see
Fig. 1;
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normal distance from the base to a point
where u,, occurs in the duct cross-section;

ymBXS

Greek symbols
o, ratio of heat-transfer area to volume of the
exchanger;
a, thermal diffusivity, k/pc,;
A, RMS error;

Ap,  core pressure drop across the heat
exchanger;
I, fluid dynamic viscosity;

o, fluid density.

Subscripts
Hl, thermal boundary condition;
H2, (@) thermal boundary condition;
i, ith boundary point on duct periphery;
J Jjth term of series solution;
m, mean;
T, uniform wall temperature boundary
condition;
W, wall.
Superscript
T, transpose of a vector or a matrix.

INTRODUCTION

THE ROLE of a gas turbine engine with a regenerator
is becoming increasingly important for vehicular and
industrial applications. A highly efficient, low volume,
low cost regenerator is a necessity for obtaining
superiority over reciprocating and diesel engines.

The first generation of vehicular gas turbine regene-
rators employed heat-transfer surfaces of triangular
flow passage geometry. However, due to manufacturing
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processes, some of the flow passages of such a regene-
rator have rounded corners or a sine shape geometry,
instead of the idealized uniform triangular shape. The
second generation of vehicular gas turbine regenerators
may employ rectangular flow passage geometry,
because the rectangular flow passage geometry is
superior to triangular passage geometry from a heat
transfer and flow friction point of view. However, the
flow passages, instead of being ideal rectangular, may be
trapezoidal or rhombic because of manufacturing
limitations. These considerations suggest the need for
theoretical solutions for a variety of flow passage
geometries.

For a compact regenerator, the flow passages must
have a small hydraulic radius. For the low Reynolids
number design range of such a regenerator, fully
developed laminar flow may prevail along most of the
flow length. Thus, fully developed laminar solutions
are needed. The determination of such solutions for an
arbitrary duct geometry is the subject matter of this
paper.

Hydrodynamically and thermally fully developed
laminar flow is analyzed for a Newtonian, constant
property fluid flowing through a duct of arbitrary
but constant cross-section (Fig. 1a). Forced convection
heat transfer is considered under a constant axial wall
heat-transfer rate per unit length and arbitrary peri-
pheral thermal boundary conditions.

Eight methods have been used in the literature to
analyze the aforementioned class of problems for
circular and noncircular ducts: (1) the analogy method;
(2) the complex variables method; (3) the conformal
mapping method; (4) the finite difference method; (5)
the point-matching method; (6) the least-squares-
matching method; (7) variational methods; and (8)
methods for small aspect ratio ducts. These methods
are described in some detail by Shah and London [1].
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F1G. 1. (a) Duct of arbitrary cross section; (b) isosceles triangular duct; (c) equilateral
triangular duct with rounded corners; (d) sine duct; (e) rhombic duct; () trapezoidal duct.
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Also, some or all of the results fRe, Nugy;, Nuy, and
Nuy obtained by these methods are presented in [1] for
twenty-five different duct geometries. The approximate
methods (5) and (6) outlined above are powerful,
computationally fast and accurate to any desired degree
for the axially constant heat flux boundary conditions.

Asisdemonstrated later, the application of boundary
values to fully developed laminar flow velocity and
temperature problems reduce to the form of solving the
matrix equation (1). In the point-matching method, the
number of boundary points chosen for the solution
equals the number of unknowns x;. In contrast, for the
least-squares-matching method, a larger number of
boundary points are chosen for a better match of the
curved or sharp cornered boundaries. Hence, the latter
method is preferred for ducts with such boundaries.

Sparrow and Haji-Sheikh [2] proposed such a
method of least-squares-matching of boundary values
for ducts of arbitrary cross-section. They employed the
Gram-Schmidt orthonormalization procedure for the
least-squares approximation. However, after experi-
encing difficulties with the Sparrow and Haji-Sheikh
method, an alternative method was devised. This pro-
posed method employs a different, numerically fast and
more accurate least-squares approximation due to
Golub [3].

After the Golub method is described, the velocity and
temperature problems are formulated, followed by the
comparison with the Sparrow and Haji-Sheikh method.
The application of the method is then made to analyze
laminar fluid flow and heat transfer through isosceles
triangular, rounded corner equilateral triangular, sine,
rhombic and trapezoidal ducts. These geometries are
delineated in Fig. 1. Finally the important aspects of the
numerical resuits are discussed from a heat exchanger
designer’s viewpoint.

THE GOLUB METHOD

The velocity and temperature problems, described
below for the laminar flow forced convection heat
transfer, reduce to solving of the matrix equation.

Ax =y 0))

where x =(xy,...,X;...,x,)7 is a vector whose
elements are to be determined. These x; correspond to
the unknown series coefficients ao, a; and b; for the
velocity problem, or ¢, ¢; and d; for the temperature
problem. The m x n matrix A consists of elements which
are harmonic polynominals associated with the un-
knowns x;. The vector y = (y,...,Vis--->Ym)" is known
for the m specified boundary points on the duct
periphery. As mentioned above, for m > n the exact
solution to overdetermined system of equation (1) is
not expected. The desired solution is the one which
minimizes error ¢ as defined below, between exact y; and
calculated y; ..

o= Lo-nd =Tlax-ylt @)

Choosing x to minimize ¢ is called “the method of
least-squares”. Golub [3] employed Householder

reflections to obtain a least-squares solution of equa-
tion (1). This method is described below. Golub’s
method is much less susceptible to trouble from
roundoff errors and works for the “ill-conditioned”
matrix where the classical method of least-squares
based on the “normal equation” approach would fail.

The properties of Householder reflections are
described in the Appendix. By successively multiplying
equation (1) by Householder reflections P;, j=
1,2,...,n, the matrix A is transformed into an upper
triangular matrix U which has at least some nonzero
elements only on top of the main diagonal, all elements
below main diagonal being zero. Essentially, equation
(1) reduces to

Ux=w (3

where
. U=QA, w=Qy 4
Q=P,...P,..P,P,. (5)

To solve this upper triangular overdetermined system
of equation (3), let

U = first n rows of U (6)
and
W = first n elements of w. 7

Thus U is an n x n square upper triangular matrix and
W is an n-vector.

Ux=w 8)

can be solved exactly to determine unknown x; by the
back substitution process of Gaussian elimination
method [4]. Employing the orthogonal property of the
Householder reflection, it can be shown that the
unknowns x; obtained by solving equation (8) repre-
sents a least-squares approximation and the error ¢ of
equation (2) reduces to

e=wii 4. +wi )

These residues are printed as a part of the computer
output in the form A;, A,, etc,, as defined later, to
establish the accuracy of the least-squares approxima-
tion.

VELOCITY PROBLEM

Consider a steady state, fully developed laminar flow
in a duct of constant cross-sectional area (Fig. 1a). The
fluid is idealized to have p, y, c,, k all constant. In the
absence of body forces, the applicable differential
momentum equation is

10/ ou 1é&u g.dp
V2 = - yr— — e = 2T .
* r6r<r6r>+r2 07 pdz 10
The boundary condition is
u=0 on T. (11)
By applying the transformation
2
u r
——=u*— - 12
o T (12)
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equation (10} is reduced to Laplace’s equation

Viu* =0 (13)

with the boundary condition, equation (11), expressed
as

w*=ri4 on T. (14)

Here the suffix i denotes the value of a point on the
duct boundary I'. This velocity problem, after the
indicated transformation, is a Dirichlet problem and
has a unique solution.

The algebraic-trigonometric (harmonic) polynomials,

reosjf(j=0,1,2,..), rsinjd(=12,..) (15

which individually are the solution of Laplace’s

equation, are chosen for the general solution of

equation (13). As the Laplace’s equation is linear and

homogeneous, the general solution is represented by the

sum of such N polynomials.

N

u* =ao+ Y ri(a;cos jO+b;sinj6) (16)
j=1

where ag, a; and b; are arbitrary constants to be deter-

mined as discussed below.

To apply this solution to the laminar duct flow
velocity problem, it must satisfy the boundary condi-
tion, equation (14), thus

N r?
a9 + Y. ri(ajcos jO;+b;sinjO) = Z‘ 7
=1

Equation (17) represents ao, a; and b, a total of
n = 2N + 1 unknown coefficients. The values of r; and
0;are provided for m points on the boundary I” so that m
equations are available for n unknowns. The problem
essentially reduces to that of solving equation (1) with
proper elements of the matrix A and the vector y from
equation (17). These unknown coefficients are deter-
mined by Golub’s method described earlier. A closed
form solution for the velocity distribution is subse-
quently obtained by combining equations (12) and (16)

as
u r o
— —=——+ay+ Y, r(a;cosj0+b;sin j6).
Cy 4 Jj=1

(18)

The flow parameters of interest, u,, K;(c0), K (c0),
K(w), L}, and fRe, are computed from the following
definitions or working formulae [1,2].

_ui=if <_l>dAc7 (19)
Cq A, A, Cy
G
Kooy =L | () qa, 20)
4\
Ke(oo)=if (—‘i)adAc, @1
Ac A, \Um
K(o0) = 2[K,(0) - Kafoo)], 22)
Df/z
= 2
IR = ey @
21—
Ly, _ Ot~ 1=K (0) "

4fRe

where u/u,, from equations (18) and (23) is given by

2 N
Yo zj:lzl_el:_ Ty ap+ Y, rj(a,-cosj0+b,sinj0):|. (25)
u, Dj 4 k=1
In the numerical evaluation of aforementioned
quantities, it is essential to know the accuracy of the
approximate solution. As Laplace’s equation is being
considered, the maximum error {if any) will occur at the
boundary points. As these points are matched by a
least-squares approximation, the RMS deviation A, of
boundary values

N . 2)1/2
— Y rla;cos jo;+b; sinjﬁi)jl } (26)
j=1

is computed to determine the degree of precision for the
velocity profile. From equations (25) and (26) it can be
seen that A, defined by

2fRe

A=
1 D'%

A, 27

compares with u/u,, the latter being the order of unity.

TEMPERATURE PROBLEM

In addition to idealizations made for the velocity
problem, consider no axial heat conduction, viscous
dissipation and thermal energy sources within the fluid.
Also neglected are the mass diffusion, chemical re-
action, and change of phase effects. The applicable
differential energy equation for laminar hydro-
dynamically and thermally developed flow is

u ot

2
Vit = 27 (28)
The associated thermal boundary condition is con-
sidered as axially constant heat-transfer rate per unit
duct length, with peripherally arbitrary variation in
temperature or heat flux. For this boundary condition
and fully developed flow, it can be shown that

o _dt,  q'P
oz dz pAcu,,,c,,'

(29)

Substituting equations (29) and (25) into (28) yields
2 N

VAT = ap — % + Y riajcosj0+b;sinjf)  (30)
i=1
where
t
T = e o
(8fReq"/kD3)

Equation (30) is now reduced to Laplace’s equation
by considering the solution of the form

3y

T=T*+T, (32)
where the particular solution T, is found as
2 4 N j+2
T,=do———+ ¥ ——(a;cosjd+b;sinjd), (33)

4 64 FaG+D)
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which satisfies equation (30). Substituting equation (32)
in (30) yields Laplace’s equation

V2T* =0, (34)

with the general homogeneous solution as
N
T* =co+ Y, ri(c;cos j6+d;sin jo). (35
=1

The coefficients cq, ¢; and d; are determined by the
least-squares method from the imposed peripheral
boundary conditions such as (i) peripherally prescribed
surface temperature, or (it} peripherally prescribed wall
heat flux. The case of an arbitrary combination of
peripherally prescribed temperature and wall heat flux
can be analyzed in a straightforward manner from the
results of the above cases (i) and (i) [ 5]. Now attention
is directed toward the specific solutions for the fore-
going two peripheral boundary conditions.

Peripherally prescribed surfuce temperature

The surface temperature of the duct periphery is
prescribed as 1(r;, 8;). Applying equation (32) at the
boundary points, one gets

N
co+ Y, rlc;cosj8;+d;sinjé)
=1

=T*=T(r,0)—T,(r,6) (36)

where co, ¢; and d; are n = 2N +1 unknowns. For m
prescribed boundary points and for m > n, equation
{36) represents a linear least-squares problem, identical

=1

to the velocity problem, and is solved using Golub’s
method. Once the unknown coefficients are determined,
the closed-form solution for the temperature distribu-
tion is found by substituting equations (33) and (35)
into equation (32). The other parameters of interest,
tes gy and Nu, and Nu are computed as follows:

t 1 u
D= | = |TdA, 37
7 SR 4, (um) A 7
k D;
., 0t fotdr 0rdb
=k = k(@r an o 6n)’ 38)
where from Fig. 1{a)
T sin@-p, L=leoso-p 09
on én r
and from equations (32) and (31),
a g 8fRe[ N | o
Z=E D [j;l]r’ {c;cos jO +d;sinj6)
r o NoG+2rtt
* .(a"ﬁ - 13) * ,;, 4G+1)
x {a;cos j@+bysin j&)}, (40}

N

Ay = {;}1 ;i [—Tp(?‘e,gi)‘“co - Z

i=1
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ot g"8fRel Y . . .
R _Z:Ifr’(djcosﬁ—c,sm;@)
N itz
+,§1 P 1)(s;jcc,«;jamajsin jB)]‘ (41)

The peripheral local and average Nusselt numbers are
evaluated from

‘1; D B 1 s
Nup = "
ur k ty—tn “2)
hDy,  (q'/P)Dy 1
Numot G120 2
=T kK tom—tn “3)
where
1
twm = = | tlr,8)ds. (44)
Pl

A special case of above generalized peripheral
temperature variation is the peripherally constant wall
temperature, #{r;,8;) = t,, = a constant, corresponding
to the@ boundary condition. The foregoing analysis
remains the same; except for convenience, T in equa-
tion (31) is redefined using (t—t,) in place of t.
Correspondingly, T(r;, ;) = 01in equation (36), the Lh.s.
of equation (37) represents (t,, — t,,) instead of ¢,, and the
Nusselt number expression of equation {43) becomes

Dyt u -t
Nl{f“ B wnge [;1; ‘L‘ (;;) TdAC] . (45)

The boundary RMS error, designated as A, for the
@ temperature problem is calculated from

. 23172
r{c;cos jO; +d; sin j@i)}} . {46)

Peripherally prescribed wall heat flux

For this problem, the heat flux around the duct
periphery I is specified as 4"(r;, 8;) = g} This heat flux
is related to the fluid temperature gradient at the wall
by equation (38). Substituting the values of dt/dr and
ot/o8 from equations (40) and {41) in equations (38)
and after rearrangement, one finds that

[e;{iri ™ (' cos j6, —m'r;sin j8,)}

=

j=1

+ d; {ri W sinjB;+mrscos j63}
% noRy N
P .
o YRe 27 16) T A A+ D)
]
x {a; {I'(i+2)cos j&;—m'jr;sin j6;}
+ b {I(j+2)sin j6; +mjr;cos j8}], (47)

where
or .
o o = sin(G;— B, “8)
Onli0y
o8 1
b2 9 = —cos{f;—B). 49
an ) n
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Equation (47) represents ¢; and d; as unknown coeffi-
cients, a total of 2N, and are evaluated by the least-
squares method. Subsequently, the closed form tem-
perature distribution is obtained from equation (32)
at the boundary points (r; ;). The fluid bulk mean
temperature and peripheral local and average Nusselt
numbers can readily be computed from their defini-
tions.

Note that the coefficient ¢, in equation (35) for this
Neumann problem cannot be determined. The solution
to this problem is unique only within an arbitrary
constant. This constant can only be determined from an
additional physical constraint such as the specification
of magnitude of temperature at one point on the wall
or in the flow field. However, for the determination of
Nu, the value of ¢, is not needed, as it cancels from the
equation.

Consider the special case of ¢, = g” = a constant.
This corresponds to the @ boundary condition. For
this case, t,, is evaluated from equation (37) and 1, ,
from equation (44), and Nuy, from the following
equation which is based on equation (43).

Di/8fRe

1 i u
~ | T@r,0)ds—— | (—)7Td
PL (r,0;)ds i L <um> A

The boundary RMS error A, for the @ tempera-
ture problem is determined from

1 m 1/2
Ay =19~ i~ ica :
4 {m,; (@i —gic 1)} .

where ¢; represents the r.h.s. of equation (47) and ¢;cn
denotes the Lh.s. of equation (47) with ¢; and d; calcu-
lated by the least-squares technique.

Nuy, =

. (50

8

COMPARISON WITH SPARROW AND
HAJI-SHEIKH’S METHOD

As mentioned earlier, the least-squares-matching
methods are powerful and highly accurate results can
be obtained for fully developed laminar forced convec-
tion in a constant cross-section duct. Sparrow and
Haji-Sheikh [2] were the first investigators to apply
such a method to the above problem. They employed
the well-known Gram—-Schmidt orthonormalization
technique for the least-squares approximation. How-
ever, other numerically fast and more accurate least-
squares approximation methods exist in the literature.
One such method due to Golub is employed in the
present paper. The following comparison presents
where exactly the improvement over the Sparrow and
Haji-Sheikh (SH) method is obtained.

The SH method employs the Gram-Schmidt ortho-
normalization technique to generate othonormal func-
tions ®; These ®; are calculated as an intermediate
step and are not needed once the unknown coefficients
x; are determined. Hence, the SH method utilizes more
computer time and storage and has more roundoff
errors than the present more direct method. Addi-
tionally, in the SH method, equidistant points on the
boundary I are required for a contour integration
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around the boundary for the determination of ;. In
the present method, equidistant points are not a
requirement.

The SH method employs real and imaginary parts
of the complex variable Z¥ = (x+iy)", in cartesian
coordinate system with N =0 to 8, for the general
solution of the Laplace equation. To obtain 1 per cent
or better accuracy in final results, the first seventeen
functions (n = 2N +1 = 17) are insufficient for the
ducts presently considered. Even though the higher
harmonic functions (N > 8) can be determined by a
complex algorithm, it is a cumbersome task to deter-
mine the other required functions for the SH method
for higher values of N. The present method employs
real and imaginary parts of a complex variable Z" in a
cylindrical coordinate system with N varying from 0 to
40; but with no difficulties for even higher order
functions (N > 40). Additionally, in the SH method,
each harmonic function contains positive and negative
terms of x and y having large powers for large N.
Computationally, this increases roundoff errors. In the
present method, roundoff errors are minimized because
(1) the use of the cylindrical coordinate system and (2)
the trick of adjusting the size of each duct geometry to
D,=2.

The accuracy obtained in the results by the present
method is discussed in the following section, where
also is indicated that a further refinement in the least-
squares solution may be obtained by the Chebyshev
method [12].

NUMERICAL RESULTS FOR TRIANGULAR, SINE,
RHOMBIC AND TRAPEZOIDAL DUCTS

As a technically interesting application of the fore-
going method, the triangular, sine, rhombic and
trapezoidal ducts of Fig. 1 were investigated. A double
precision program was written in Fortran IV-H
language for IBM 360/67 and 370/145 computers. All
the defails of numerical computations and the
computer program are presented in [5]. Some salient
points are summarized below.

Area integrations of equations (19), (20), (21) and (37)
were evaluated using the Newton—Cotes 7-point closed
type composite integration formula [4]. The contour
integration, to evaluate t,, »,, was performed using the
trapezoidal composite integration formula; because
this method is believed to be more accurate for a closed
contour than the higher order Newton—-Cotes formulae.
A total of 83 to 91 points were taken along the
boundary of the ducts considered. N in the series
solutions was specified from 30 to 40 with 40 used for
the most ducts.

Important geometrical properties and numerical
results obtained for flow and heat transfer are
summarized in Tables 1-5. Some of these results are
also presented in Figs. 2-5. For completeness, results
for the limiting duct geometries of 2b/2a = so and 0
from [1] are included. Note that when 2a = 0 (see
Fig. 1), the trapezoidal duct reduces to an isosceles
triangular duct. Also included is Nuy for the isosceles
triangular and sine ducts from [6] and [ 7] respectively.
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Table 1. Isosceles triangular ducts geometrical, flow and heat-transfer characteristics for fully developed laminar flow*

2b ¥ Prmax Uimax
+
= 2¢ P Ki(oo) Ko} K{wo} By SfRe Nur Nugy Nugs  thoe  Dhoin
2a 2a 2a U
» 0 - - 32000 1600 3086 2971 #1048 12.000 0.943 2.059 [ - -
84000 7olS 2466667 #83592 24593 14545 24805 2521 0648 124352 1446 24348 04039 -~ -
54715 10400 1490501 74009 24521 145286 24731 2409 <0590 124474 1461 24446 0,080 - -
44000 14025 1433333 464240 24462 14505 24640 24271 40533 12636 1481 24575 04173 4el16 -
24836 20400 0494521 55282 24368 14482 24546 24128 <0484 124822 2400 24722 0.366 4407 -
2000 £B8407 066667 46729 24302 16459 246454 14991 <0443 174026 222 24880 02747 3.83 .073
14866 30200 0462201 445102 24290 16455 2,438 12966 <0436 13.065 2426 24910 046851 3.73 <127
1500 36487 050000 440140 24259 14443 2,392 1eH98 0418 13181 2436 2998 122 3438 «287
14374 40000 0445791  W3B215 24269 14430 2,377 14876 40412 134222 2439 34029 1438 3417 4347
1,072 50400 0e35742 +33033 24228 1431 24347 16831 L0401 134307 2445 34092 1476 253  J46%
14000 5313 0633333 431641 24225 1+430 243462 1824 40399 134321 2446 34102 1.82 Zehl  +4B3
D866 C0e00 (e28868 «28BREB 24222 1429 2,338 1818 L0398 134333 2,47 3111 1892 1e79 o515
0.750 67638 0025000 426231 2225 14430 24342 1824 20399 134321 2445 34102 1e84 1499 2499
Ga718 TO«QO 0423803 25364 24227 14431 24345 14829 0600 136311 2445 3,005 1480 2,04  +488
04896 8Ne00 0419863 422313 24261 14436 24366 14860 0408 132248 2440 34050 1459 219 o432
G500 90400 04160667 19586 2,264 12445 2,400 14909 #0421 13#153 2,34 2,982 1.34 2¢30  +364
04289 120400 0409623 +I2552 24380 16489 2571 24165 0490 12,768 2,00 2.680 0a62 2445 o187
00250 126487 0408333 11085 24416 14499 24617 24235 405185 126622 1490 24603 04490 2e47 13}
Qel34 150400 0604466 406301 24587 1543 24815 24543 40644 12.226 1250 24325 04156 2456 045
0el25 15193 0404167 05907 24605 1548 24835 2576 40659 124196 1447 24302 0136 2e65 4038
o 18000 0400000 00000 34000 1600 34086 24971 1048 124000 04943 2.089 o - -
*P/2a = 1+[1+@2bjay’], A/(20)* = bj2a.
!Gc‘ ~0-086
150 .
~0-060
14-0 T
30 ]
© g 40050, 8
x 120 ] 3
A
o 7
100 1
€040
9-0 .
- n‘~2o‘/2 c'- 2&/ a 7 7
80 b‘*‘- ‘ #6  Joo3za

0 02 04 06 08

-

a
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F1G. 2. Isosceles triangular and sine ducts K{o), Ly, and fRe for fully
developed laminar flow.

Table 2. Rounded corner equilateral triangular ducts
geometrical, flow and heat-transfer characteristics for fully
developed laminar flow

0 rounded 1rounded 2rounded 3 rounded

corner corner corner corrmer

Pj2a 300000 277172 254343 231515

A/(a)? 043301 041399 039497 037594
Dy/2a 057735 059745 062115  0-64953
5/2a 028868 026778 030957  0-28868
Fran/ 20 028868 028627 029117  (0-28868
U/t 2222 2172 2115 2064
K(o0) 1429 1406 1379 1353
K.{c0) 2338 2254 2163 2074
K(c0) 1818 1698 1-567 1-441
L, 00398 00359 00319 00284
fRe 13333 14057 14899 15993
Ny, 3111 3401 3756 4205
Nuga 1892 2196 2715 3780
£ 179 203 242 122
£ nin 0515 0512 0550 0757

The coefficients in equations (17}, (35) and (47) for the
velocity and temperature problems and the RMS
errors A; to A, are reported in [5]*

Except for the rhombic ducts, the maximum velocity
does not occur at the centroid of the cross-section, but
rather occurs on the axis of symmetry away from the
centroid. The distance 7 of the centroid and ¥, (Where
the maximum velocity occurs), both measured from the
base, are also reported in these tables.

The wall temperature around the duct periphery is

*The coefficients b; of equation (18) and d; of equation
{35)are zero for a duct symmetrical about one axis and when
§ is measured from the axis of symmetry. The coefficients
a; for the velocity problem and ¢; for the and
temperature problems are determined for the rectangular,
isosceles triangular, rounded corner triangular, sine, rhombic
and trapezoidal ducts. They are deposited as Document No.
NAPS 02464 with the National Auxiliary Publications
Service, c¢/o Microfiche Publications, 440 Park Avenue
South, New York, NY 10016.
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FiG. 3. Isosceles triangular and sine ducts Nuy,, Nuy,
and Nuy for fully developed laminar flow,
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F1G. 4. Trapezoidal ducts fRe and K{co) for fully developed
laminar flow.
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FiG. 5. Trapezodial ducts Nug and Nuy, for fully
developed laminar flow.

nonuniform for the@ boundary condition. A hot spot
occurs at one of the corners of the noncircular duct
and a cold spot occurs on one of the sides, The
corresponding dimensionless maximum and minimum
wall temperatures, 1§ m.x and ) ., are presented in
Tables 1-6.
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Inorder to assess the accuracy of the present method,
calculations were also made for rectangular ducts with
aspect ratio varying from 1 to §. Some of these results
are presented in Table 6 [1,5] The tmen/thm Ki(o0),
K x), K(o0), L, fRe and Nuy, results presently
determined for all the rectangular and the equilateral



Table 4. Rhombic ducts flow and heat-transfer characteristics for fully developed laminar flow

Umax +
¢ - Ki0)  K.(0) K(w) hy fRe Nuy, Nugy  thmex  bhmin
m

90 24096 le378 2154 14551 00324 144227 3.608 3.09 1639

80 24102 10381 24163 1564 00327 14.181 3.581 297 1465 g:;Sg
70 2120 1.389 2190 1603 00336 144,046 3,500 2e64 1.86 OCeb671
60 2e151 le4Q2 2239 1,673 0«0353 13.830 3367 216 2405 0e565
50 24199 le422 24311 1.778 00380 134542 3.188 l1e62 221 0439
45 24230 1.436 24361 1.850 00397 134381 3.080 1434 2

40 24266 les448 2e¢411 14925 Oe0419 13,193 20969 1409 2-%; g:gzg
30 24359 le4B1 2541 24120 060477 12+803 2.722 0«624 240 0e185
20 20493 1521 24713 2.384 0e0570 124,416 24457 0e279 2445 0089
10 2.689 le562 24908 24693 Ds0732 12,073 24216 0e0Q70 2046 0023
o 3.000 1600 3.086 20971 001048 12,000 24059 0 - -

Table 5. Trapezoidal ducts geometrical, flow and heat-transfer characteristics for fully developed laminar flow

2b 3-) Pmax umax
+
% % a —  Ki(0) K(w) K(w) hy SfRe Nugy Nugs thmex  Bhmin
m

¢ = 85°
d 1480501 474009 2,521 1526 2731 24409 #0590 124474 2.446 0,08 - -
8 143804 474010 24185 1368 24147 16557 #0318 17474 4,366 1.22 - -
4 1407487 +73895 24025 1336 24008 14343 40262 164740 44483 2.54 2424 4297
2 70399 466375 24045 14362 24092 1461 o0287 154015 34896 3401 1455 4554
473  #52173 52482 2091 1377 24149 14543 +0320 144312 34636 3405 152 687
1 41413 442131 24096 14379 24155 12552 40324 144235 34608 3,05 1455 4716
3/4 432469 433057 24070 1371 24125 14508 40305 144576 34736 3404 1456 4611
172 «22668 422982 14981 1345 24028 14367 40248 154676 40175 2498 1464 4478
1/4 411891 11976 1,768 14286 14821 1.069 0144 Be297 54363 2491 1487 4305
1/8 «06094 06116 14627 14245 1683 04875 00936 206599 64501 2489 2.18 190
0 - - 14500 14200 1543 04686 400588 24+000 8.235 ~ - -

¢ = TSO
© «62201 445102 24290 14455 24438 14966 40436 134065 24910 04851 3,73 127
8 58459 45100 24219 14415 24300 14770 0362 144907 34520 1490 2443 4369
4 +52650 444990 24141 14385 24185 14560 40331 144959 34720 2457 1461 511
2 +42654 42537 24107 1382 24166 16569 40327 14340 34610 2.82 1473 611
4/3  +35472 437226 24112 14385 24177 14584 40332 144118 34542 2483 1.76 704
1 #30261  +32029 24099 14381 24163 14563 40323 14,252 3.594 2.82 1,78 4612
3/4 425257 426619 24063 14370 24121 14502 40298 144697 34766 2681 179 4533
1/2 418940 19707 14968 14343 24020 1643546 0240 156804 4,219 2478 1485 .432
1/4 410793 11023 14763 14286 14819 14066 <0142 186313 5,371 2475 2.03 ,286
1/8 405794 <0SB58 14627 14246 14684 04877 00936 204556 64482 2476 2430 181
0 - - 14500 14200 14543 0,686 +00588 24,000 8,235 - - -

¢ = 60°
© « 28868 (28B68 24222 1.429 2,338 1818 <0398 134333 3611l 183 179 <515
8 28366 «28861 24205 14419 24303 14770 0377 13867 3.284 2.09 1496 520
4 «27315  «2B749 24181 14609 24267 1.716 +0367 134916 34348 2416 2403 514
2 ¢24B19 427568 24162 14404 2,248 1,687 <0360 13.804 3,350 217 2407 4540
473 ¢22445 25304 24146 1400 24232 14664 <0350 13888 34390 2617 2407 4490
1 20374 422860 24119 14392 2,201 14618 0331 14.151 3495 2417 207 o442
3/4  #1B072 20001 24071 14378 24148 14539 +0299 144637 34691 2418 2.09 +401
172 414666 415841 14969 14349 24039 14379 40239 154693 44140 220 213 342
1/6 409292 409700 14766 14291 14833 14084 +0143 184053 5247 2426 2426 o242
1/78 405339 405462 14634 14251 14700 04897 +00950 20304 603461 231 2.47 #158
0 - - 14500 14200 14543 0,686 +00588 24.000 84235 - - -

¢ = us°
© 16667 o195B4 2,264 14445 2,400 16909 #0421 136153 2,982 1.35 2429 364
8 ¢16558 419575 24258 14442 24388 14893 0414 134301 36030 1435 229 #2364
4 «16296 419480 24250 14439 24377 14876 #0610 13+323 3,048 1435 2430 <344
2 e15556 18829 24232 14434 24358 1,847 0400 134364 34081 1e35 2430 4326
4/3 414719 17716 24206 14427 24328 1.803 40381 136541 34155 1436 2430 4294
1 213889 o16483 2,169 14418 24290 1,744 #0355 13,827 34268 1437 2631 4277
3/46 412857 14945 24109 1398 24218 16639 0317 144260 34469 1440 232 4263
172  «11111 412495 14998 14367 24099 16464 «0251 154206 34888 1eb44 2435 4236
1/4 407778 408333 14787 14303 14875 16142 «0151 17397 44943 1455 2446 4180
1/8 «04815 #05000 14652 14266 14737 0.943 +00996 19.743 64034 1461 2.65 4122
0 - - 1500 1200 14543 04686 +00S88 244000 8,235 - -

¢ = 300
C] c09623 12552 2e380 14489 24571 2165 40490 120744 2,680 <621 245 167
8 09600 12543 24375 14484 24558 24146 #0489 124760 24697 4625 2445 L164
4 009541  ¢12482 24371 1484 24555 24141 40485 12782 24704 4624 2644 4163
2 09351 12170 24352 14482 24540 Pell5 +0869 12875 24736 4622 2444 o146
473 409105 11676 24310 14468 24486 2.038 40442 13012 2821 4635 2644 o141
1 «08834 11121 26266 14457 2442 14969 40408 13246 2919 640 2446 4137
3/4 08459 410397 24200 leb41l 2373 1864 40363 134599 34077 652 2447 133
172 «07735 409148 24073 14404 24229 1651 20287 144323 3436 4685 255 4126
1/46 406024 o06699 14850 14344 1,988 1.4288 +0174 166284 44349 #4744 2483 4103
1/8 204103 04361 14678 14272 14768 04992 40112 184479 54569 888 289 4080
[ - - 1,500 14200 14543 De686 +0058B 24.000 84235 - - -

Table 6. Rectangular ducts [¢ = 90° in Fig. 1(f)] flow and heat-transfer characteristics for fully developed
laminar flow

2b U,
ax +
5 u Kd(w) Ke(w) K((D) Lhy fRe NuT Nqu NuHZ t:{'.mnx t:,min
m
1,000 24096 14378 2,154 1552 40324 144227 24976 34608 34091 1+39 o769
0750 2077 1373 24133 14520 «0310 144476 - 34701 3407 led1 * 649
0500 1.992 16347 2,039 le383 «0255 154548 74391 42123 3.02 1«50 2499
04250 le774 1.288 1.826 1.076 «0147 184233 4.439 S+331 2094 176 311
0e128 1628 14245 1685 0.879 +00938 204585 54597 6+490 2494 2611 ¢ 192
o 1.500 1200 1e543 04686 + 00588 244000 7e541 Be 23S - - -

857
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triangular ducts differ by less than 0-01 per cent when
compared to the best literature values [ 1]. Correspond-
ing values for isosceles triangular ducts, Table 1, are in
excellent agreement with Sparrow and Haji-Sheikh’s
results [8]. The Table 3 results for sine ducts are in good
agreement with the limited results obtained by Sherony
and Solbrig [7] using a finite difference method.
Nuy, for the rhombic ducts are within 0-1 per cent
of those by Igbal et al. [9]. From these comparisons
and knowing the values of A;, A, and A; are less
than 10~ for most of the ducts, it is concluded that
the present method will provide numerical results
accurate to within 0-05 per cent for those ducts with
straight boundaries or those not having very narrow
corner regions and within 1 per cent for those ducts
with sharp curved boundaries or those having very
narrow Corners.

The only literature values available for Nug, are for
square and equilateral triangular ducts [10]. rect-
angular ducts, and rhombic ducts with 90° < ¢ < 60°
[11]. Values obtained using the proposed method are
within 0-3 per cent of these literature values. The
accuracy for Nuy, is not as good as for Nuy, because
of the “differentiation process” involved in the
boundary values of the fluid temperature, equation (38).
The accuracy can be improved, if desired, by some of
the suggestions in [5]. From the foregoing com-
parisons, and knowing 1073 < A, <1077, it is con-
cluded that the Nuy, results are accurate with 1 per
cent for those ducts with straight boundaries or those
not having very narrow corners and within 5 per cent
for those ducts with sharp curved boundaries or those
having very narrow corners.

A further refinement in the least-squares solution
may be obtained by employing the Chebyshev method
[12] instead of the Golub method. The Chebyshev
method checks the error of all boundary points
individually and minimizes the maximum error of any
boundary point. The Golub method minimizes the sum
of squares of errors of all boundary points.

DISCUSSION ON INFLUENCE OF
PASSAGE GEOMETRIES

Two preliminary questions involved in a new heat
exchanger design are (1) how to compare the per-
formance of different idealized passage geometries and
(2) if the actual passage geometry differs markedly
from the idealized passage geometry due to manu-
facturing process, how to assess these effects on heat
transfer and pressure drop.

Comparison of different idealized passage geometries

The performance of heat exchanger cores made up of
different idealized passage geometries may be com-
pared in the following two complimentary ways: (1)
comparing the flow area “goodness” factors j/f; and (2)
comparing the core volume “goodness” factors hyy vs
Eqq.

It can be shown that the flow area goodness factor

Jj/fcan be expressed as
J_ NuPr™'3 1 (Prz"3 Ny W2>

Z N,__Z%

/ fRe

From the first equality in the above equation, j/f is
constant for fully developed laminar flow of a specified
fluid. From the second equality, this area goodness
factor derives its name as it is inversely proportional to
A? (A, =core free flow area) for the bracketed
quantities being constant. The dimensionless j and f
factors characterize the shape of geometry and are
independent of the scale of the geometry (D,). Hence,
the area goodness factor j/f for different surfaces,
when compared, represents the influence of the
differences in nondimensional geometric factors. jg, /fis
presented in Fig. 6 for the rectangular, trapezoidal,
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FIG. 6. Isosceles triangular, sine and trapezoidal ducts jy,/f
for fully developed laminar flow.

sine and isosceles triangular ducts. This factor ranges
from 0265 (equilateral triangular duct) to 0-390
(parallel plates). Thus the parallel plates geometry,
relative to the equilateral triangular duct, presents an
improvement of 47 per cent (= 0-390/0-265— 1) for jg,/f
and consequently requires an 18 per cent (1—1/,/1-47)
smaller free flow area. Very sharp cornered isosceles
triangular ducts (a* ~ 0) have the poorest flow area
goodness factor (jy1/f = 0-195).

The exchanger porosity must be considered in order
to translate this free flow area advantage into a frontal
area improvement. Note that in the flow area “good-
ness” factor comparison, no estimate of total heat-
transfer area or the volume can be inferred. This is
the function of the volume “goodness” factor to be
described below.

The core volume “goodness” factor is characterized
by a high position for the plot of Ay vs Egg, Where

k cpit 1,
hstd = E;Nu = Pr2/3 E}Re’ (53)
WAp w1
Egy = —— = —— —fRe®. 54
W=Toa T N Y
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From the first equality in equation (53), hyq is constant
for fully developed laminar flow through a constant
cross-sectional duct. The expression for Eqq in equation
{54) rigorously applies to a constant density fully
developed laminar flow. For such a flow, Ap is propor-
tional to W, hence Eqq4 is proportional to W2, Unlike
the j/f factors, hyy and Eyy are dependent upon the
scale of the surface geometry as found from equations
(53) and (54). Hence, for comparison of different
surface geometries, a common hydraulic diameter
D, = 0-002 ft (0-61 mm)is used to eliminate the influence
of geometrical scale. Also the physical properties*
employed in equations (53) and (54) are for dry air at
one atmosphere pressure and S00°F (260°C), a standard
set of conditions.

The dimensionless heat transfer in a heat exchanger
is measured by the exchanger effectiveness which in turn
depends upon N,, for fixed flow rates. In a “balanced”
heat exchanger, the thermal resistances of both sides of
a heat exchanger are of the same order of magnitude;
hence N,, is proportional to k4 or hyy A. Thus, the
higher hyqy for a specified Eyq, the lower is the heat-
transfer area A requirement for the specified exchanger
effectiveness; and as A = aV = (4p/D,)V, for a fixed D,,
the smaller is the heat exchanger volume for a given
porosity, p.

As hyq is constant for fully developed laminar flow
and does not vary with E,y, it is plotted against the
aspect ratio o* in Fig. 7 to cover the entire family
of rectangular, trapezoidal, sine and isosceles triangular
ducts. From this figure, it can be seen that hyy varies
from 236 to 1012 Btu/(h ft*°F) (a factor of 4:3); and
hyq = 38-2Btu/(hft2°F) for the equilateral triangular
duct.* Thus the parallel plates heat exchanger would
require 62 per cent (1-38-2/1012) less heat-transfer
area compared to the equilateral triangular heat
exchanger. Additionally, if both the exchangers are
designed for the same Eyy and W, the parallel plate
heat exchanger will also have 62 per cent less pressure
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F1G. 7. Isosceles triangular, sine and trapezoidal ducts hgqg
for fuily developed laminar flow (based on@l).

*Pr = 0-680; i = 006748 Iby/h ft; ¢, = 0-2476 Btu/lby,°F ;
k = 002458 Btu/h ft °F; p = 0:04132 lbp/ft.
*1 Btu/th ft2°F) = 5678 W/(m?K).
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drop. It should be pointed out that the effect of flow
area and volume goodness factors is not necessarily
cumulative. If the above advantages in 4, V and Ap
are to be realized simultaneously, the required free flow
area for parallel plates will be larger. From equation

(54),
S
A“‘J (Ev)'

Heﬁce, the parallel plates heat exchanger would require
a 34 per cent [\/{1/(1-47 x 0-377)} — 1] more free flow
area, and for the same porosities, a 34 per cent more
frontal area than the equilateral triangular matrix.
However, for a common pressure drop (not the same
Eqq), the previous gain of the 18 per cent reduction
in frontal area would still apply along with the 62 per
cent reduction of volume for parallel plate heat
exchanger for the same W, N, and p.

From the foregoing viewpoints, the rectangular duct
family with o* < 0-25 appears to be most promising
from Figs. 6 and 7. However, the isosceles triangular
or sine duct surfaces are more readily fabricated relative
to o* < 025 rectangular duct surfaces. A practical
attempt to fabricate the latter surface for a regenerator
is the so-called deepfold rectangular passage (2b/2a = 8)
surface. Theoretically, it has jy,/f= 0359 and hy =
79-8 Btu/(h ft” °F). However, if the passages of such a
surface are of the trapezoidal shape with ¢ = 85° due
to manufacturing process, instead of perfect rectangles,
a severe degradation in the performance results. The
equivalent trapezoidal duct having the same width at
the middle of the channel has 2b/2a = 267 for ¢ = 85°.
This geometry has theoretical j5,/f = 0:237 and hyq =
40-0 from Figs. 6 and 7. Thus, a 5° inclination in the
long side of the rectangular duct results in a reduction of
34 and 50 per cent respectively in jg,/f and hyq factors.
Interms of heat-transfer area requirement, this means a
penalty of 50 per cent. In reality, a 5° inclination may
be excessive, but the results of Figs. 4-7 clearly
demonstrate that the heat transfer and pressure drop
of a deepfold surface may be very sensitive to the
tooling used to form the passage geometry.

(55)

Influence of departure from idealized passage geometry

The passage geometry of an actual heat exchanger
core can be significantly different from the idealized
geometry. As mentioned in the Introduction Section,
an equilateral triangular passage heat exchanger core
often has passages of rounded corners and sine
geometries. The theoretical performance of such a core
can be significantly different from that of a core with
ideal passages. The differences in heat transfer and
pressure drop of such a “nonuniform” core may be
assessed based on the method outlined by London [ 13].

Four “nonuniform” cores are considered as examples
to illustrate the use of numerical results presented
earlier and to bring out the effects of idealized non-
uniformities: (1) equilateral triangular passage cores
having (a) 50 per cent zero rounded corner and 50
per cent three rounded corner equilateral triangles and
(b) 100 per cent three rounded corner equilateral
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Reference matrix 50%

O-rounded corners

100% 3-rounded

100% O-rounded corners 50% 3-rounded corners corner passages
(a) (b) (c)
Reference matrix 50% rectangles 100% trapezoids
100% rectangles 50% trapezoids (¢ = 85°)
(¢ =90°) (¢ =85°)
(d) (e) (f)

FIG. 8. Idealized uniform and nonuniform matrix passage geometries for the
results of Table 7.

triangles; (2) 8 to 1 (2b/2a = 8) aspect ratio rectangular
passage cores having (a) 50 per cent rectangles and 50
per cent trapezoidal passages with ¢ = 85° and (b)
100 per cent trapezoidal passages with ¢ = 85°. The
idealized uniform (reference cores) and nonuniform
passage geometries are presented in Fig. 8. For each
of the four cores of (1) and (2), the heat exchanger
frontal area, flow length, and passage mid-wall thick-
nesses are specified to be the same as those for the
reference cores.

The comparisons are made considering equal flow
rates through the nonuniform and the appropriate
uniform (reference) cores. The basic relations for N,
and Ap of a heat exchanger employed are

NuP
Nu= ot (—"5 . (56)
WCp WCp Dh
4L puk  [2ulLW\ [ fRe
Ap=f— = .
i th 2gc ( gcp ) (Ac D}% (57)

It is idealized that the flow is fully developed through-
out the flow length and can be treated as at a constant
density for the Ap evaluation. Moreover, u, ¢, k, p and
L are considered as constants. The ratios of effective
N, Ap and W of a nonuniform core to the appropriate
reference core, designated as N}, Ap* and W*, are
presented in Table 7. The method of London [13] is
used to determine N,, of the nonuniform cores which
in turn depends upon N,, of the reference cores.

Table 7. Influence of rounding of corners on an equilateral
triangular matrix and of trapezoidal passages in a deepfold
rectangular matrix

Equilateral triangular Deepfold rectangular

geometry of geometry of geometry of geometry of

Fig. 8(b) Fig. 8(c) Fig. 8(e) Fig. 8(f)
w* 1 1 1 1
Ap* 1-044 1-092 0-867 0766
N:t 0964+ 0927 0616+ 0-505

*Even though Nj depends on Ny, e, N is 0:964 for
1 < Neyrer < 20.

+The magnitude of N} is 0-686, 0-635, 0-623 and 0-616
for the values of Ny, rer as 1, S, 10 and 20 respectively.

A review of the results of Table 7 reveals that the
rounding of corners of a triangular matrix has only a
small adverse influence on the N,, and Ap of the core. In
contrast, a severe degradation in N,, results for a deep-
fold surface having all trapezoidal section passages with
¢ = 85°. From Table 7, a 495 per cent (1—0505)
reduction (degradation) results in N,, compensated in
part by a 23-4 per cent (1 —0-766) reduction in pressure
drop for the Fig. 8(f) geometry.

CONCLUSIONS

A least-squares-matching method is presented to
analyze fully developed laminar flow and forced con-
vection heat transfer in ducts under axially constant
wall heat flux and peripherally arbitrary thermal
boundary conditions. As an application of the method,
numerical results are provided in Tables 1-6 for the
isosceles triangular, rounded corner equilateral tri-
angular, sine, rhombic, trapezoidal and rectangular
ducts. The influence of passage geometry on the heat
exchanger design is shown in Figs. 6 and 7 in terms of
flow area and volume goodness factors. It is shown that
the rounding of corners of an equilateral triangular
matrix has only a small effect on the heat exchanger
performance. In contrast, if a deepfold passage
geometry (2b/2a = 8) has all trapezoidal passages, a
very significant reduction in the heat exchanger per-
formance occurs relative to true rectangular passages.
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APPENDIX

Householder Reflection

An m x m square matrix P of the following form is called
a Householder reflection

1
P=I1--wT (58)

where I is an identity matrix and
B=4lv)? =v"v2 (59)
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for any vector v = (vy,...,0,)". It can be readily proved
that the Householder reflection P is its own inverse and its
own transpose and hence it is orthogonal.

The important property of the Householder reflection is
that for any nonzero vector g, it is possible to find a
Householder reflection P which annihilates the desired
elements of this vector. Consider one wants to keep
g1,--.,9;-1 unchanged, change g;, and make g;;1,...,gm as
zero. In that case, define

o« =sign(g;) @ +g5s1+ ... +92)'* (60)
v=1(0,....0,g;4 G+ 1>+ 0m) (61)
B=alg;+a) (62)

where sign(g) is 1 if g; > 0 and —1 if g; < 0. Substituting
equations (60), (61) and (62) into equation (58) provides the
Householder reflection P; which when operated on g yields
the desired vector.

Pig=(g1,....0;-1, —2,0,...,0)T. (63)

Furthermore, if h is any vector with not all h; through
hj-, as zero and h; through h, as zero, then P; yields the
vector

Ph=h (64)

However, if all the elements h; through h, are not zero,
define a constant y as

y=0"h/B, (65)

then
P;h=h—yv. (66)

The aforementioned property of the Householder refiec-
tion is employed to reduce the system of equation (1) into the
upper triangular system of equation (3). For the House-
holder refiection Py, the vector g is considered as the first
column of matrix A. a, v, f§ and y are computed by
equations (60), (61), (62) and (65) with j = 1. The application
of P, on the first column of A results in its first element as
—a and the rest as zero. The second through ath column
and P, v are obtained by use of equation (66). The successive
application of P,,..., P, results in the matrix equation (3).
To minimize the roundoff errors in the numerical computa-
tion, at each step a pivoting is done by choosing the column
with the largest sum of squares of matrix A to be reduced
next.

It should be emphasized that the application of the
Householder reflection P does not mean the matrix multipli-
cation, but it means obtaining the r.hs. of equations (60),
(61) and (63) which at the most involves the vector inner
product and vector subtraction.

FROTTEMENT ET TRANSFERT DE CHALEUR EN CONVECTION FORCEE
LAMINAIRE DANS LES CONDUITES A GEOMETRIE ARBITRAIRE

Résumé —Une méthode d’optimisation au sens des moindres carrés est présentée afin d’analyser 'écoule-

ment laminaire établi et le transfert de chaleur dans les conduites de section arbitraire. Le transfert

thermique en convection forcée est considéré dans le cas d’un flux longitudinalement constant avec des

conditions aux limites thermiques arbitraires sur la périphérie. A titre d’application de la méthode, des

résultats dynamiques et thermiques sont présentés pour des géométries de conduites 4 section droite

comprenant, des triangles isoceles, triangles dquilatéraux a sommets arrondis, sinus, losanges et trapézes.
Ces résultats numériques sont discutés en vue de la conception des échangeurs de chaleur.

LAMINARER REIBUNGS-DRUCKABFALL UND WARMEUBERGANG BEI
ERZWUNGENER KONVEKTION IN KANALEN BELIEBIGER GEOMETRIE

Zusammenfassung— Zur Untersuchung der vollausgebildeten Laminarstromung und des Wérmeiibergangs
in Kanilen beliebigen Querschnitts wird eine Methode der kleinsten Fehlerquadrate vorgestellt. Der
Wirmeiibergang bei erzwungener Konvektion wird unter der Voraussetzung konstanten axialen Warme-
durchsatzes bei beliebigen thermischen Randbedingungen an der Berandung behandelt. Als Anwendungs-
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beispiel des Verfahrens werden Losungen fiir Stromung und Wirmeiibergang fir folgende Kanalquer-

schnitte vorgestellt: gleichseitig dreieckig, gleichseitig dreieckig mit abgerundeten Ecken, sinusférmig,

rhombisch und trapezf6rmig. Diese numerischen Ergebnisse werden aus der Sicht des Wirmetibertrager-
konstrukteurs diskutiert.

TPEHUE U NMEPEHOC TEIUJIA [1PU JJAMMHAPHON BLEIHYX/JEHHOM
KOHBEKLIMM B TPYBAX ITPOMU3BOJILHON ©OPMBI

AnHoTamus — B craTthe paccMaTpHBaeTCs NpUMEHEHUE METOIa HAUMEHbILHX KBaJpaToB /s Hccrne-
NOBaHHA MOJHOCTHIO PA3BATOrO JIAMKHAPHOTO TEYEHHSA XHUAKOCTH M Ternoobmena B Tpybax npous-
BOJIBHOTO CeveHHA. TemonepeHoc Npy BbIHYXASHHOM KOHBEKUMH pacCMATPHBAETCS MPH MOCTOAHHOM
0CEBOM TEIIOBOM IOTOKE M NPOH3BOJIBHBIX MEpHPEPUIECKHX TEIIOBbIX IPAHHYHbBIX YCIOBHSAX.

B kayecTBe NpHMEpPOB IPEICTAB/EHBI PE3yabTaThl N0 TPEHHIO M TEIUIOOOMEHY HNIA ceuyeHHi
Tpy6bl B dopMe paBHOGEHPEHHOTO TPEYrOJLHHKA, PABHOCTOPOHHEIO TPEYroJbHMKA C 3aKpYyTJeH-
HBIMHM YIVIAMH, a TaKXe€ CHHYCOMAanbHOro, pombHvyeckoro M TpaneuenganbHoro cedeHuit. lMony-
YeHHbIE YMCIEHHbIE pe3y/ibTaThl PACCMATPHBAIOTCA C TOYKH 3PEHHS KOHCTPYMPOBAHHSA TEIUIO-

OOMEHHHKOB.



