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Abstract-A least-squares-matching technique is presented to analyze fully developed laminar fluid flow 
and heat transfer in ducts of arbitrary cross-section. Forced convection heat transfer is considered under 
constant axial heat-transfer rate with arbitrary peripheral thermal boundary conditions. As an application 
of the method, flow and heat-transfer results are presented for the duct geometries of isosceles triangular, 
rounded corner equilateral triangular, sine, rhombic and trapezoidal cross-sections. These numerical results 

are discussed from a heat exchanger designer’s viewpoint. 

NOMENCLATURE 

m x n matrix; 
duct cross-sectional (flow) area; 
dimensions as specified in Fig. 1; 
a constant (pressure gradient parameter); 
specific heat of fluid at constant pressure; 
hydraulic diameter, 4A,/P; 

fluid pumping power defined by equation 

(54); 
Fanning friction factor for fully developed 
laminar flow [dimensionless]; 
proportionality factor in Newton’s second 
law of motion; 
thermal boundary condition referring to 
axially constant heat-transfer rate per unit 
length with constant peripheral wall 
temperature; 
thermal boundary condition referring to 
axially constant heat-transfer rate per ,unit 
length with constant peripheral wall heat 
flux; 
convective heat-transfer coefficient for fully 
developed laminar flow; 
Colburn heat-transfer modulus, StPr2j3 

[dimensionless] ; 
incremental pressure drop number, 
Ap/@t&2g,) -f(4L/Dh) [dimensionless]; 

K, (co), momentum flux correction factor, defined 
by equation (20); 

K, (co), kinetic energy correction factor, defined 
by equation (21); 

k, fluid thermal conductivity; 
L hy, hydrodynamic entrance length; 
L+ hy, dimensionless hydrodynamic entrance 

length, &/Dh Re; 

m, number of boundary points; 
% number of unknowns in velocity and 

temperature problems; 
n, s, outer normal and tangential coordinates at 

a boundary point ; 

NW 

Nup, 

N,“, 

P, 

P, 

Pr, 

P, 

4”, 

4;, 

Re, 

r, 8, Z, 

St, 

T, 

t, 
t CT 
t m, 
t w,m, 

t* W,nlz3X~ 

t* w,mim 

f4 

%I? 

%I,,, 

W, 

V, 

X, 

Y, 

x, Y, z, 

II x II =, 

Yy 

peripheral average Nusselt number, hDJk 

[dimensionless] ; 
peripheral local Nusselt number 
[dimensionless]; 
number of heat-transfer units, hA/Wcp 

[dimensionless]; 
duct perimeter; 
Householder reflection defined by equation 
(58), used in Appendix and the section on 
Golub’s method only; 
fluid Prandtl number, &k [dimensionless]; 
porosity [dimensionless]; 
peripheral average heat flux; 
peripheral local heat flux; 
Reynolds number, pu, D,,/p [dimensionless] ; 
cylindrical polar coordinates; 
Stanton number, hAJWc, [dimensionless]; 
temperature defined by equation (31); 
temperature; 
fluid temperature at the duct centroid; 
fluid bulk mean temperature; 
mean wall temperature defined by equation 

(4% 
maximum wall temperature 

(LVn,, - MLn - te) [dimensionless]; 
minim& wall temperature 

(fw,min - tMtw,m - te) [dimensionless]; 
fluid axial velocity for fully developed 
laminar flow; 
mean axial velocity, refer equation (19); 
maximum axial velocity across the duct 
cross-section; 
fluid flow rate; 
volume of the heat exchanger; 
an n-vector; 
an m-vector; 
Cartesian coordinates; 
Euclidean norm of a vector (xi + . . . + xi)112 ; 
distance of a centroid of the duct 
cross-section measured from the base, see 
Fig. 1; 
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ymax, normal distance from the base to a point 
where u,,, occurs in the duct cross-section; 

Greek symbols 

a, ratio of heat-transfer area to volume of the 
exchanger; 

m, thermal diffusivity, k/PC,; 

4 RMS error; 

AP> core pressure drop across the heat 
exchanger; 

P9 fluid dynamic viscosity; 

P> fluid density. 

Subscripts 

HI, HI thermal boundary condition; 

H2, 8 HZ thermal boundary condition; 

1, ith boundary point on duct periphery; 

19 jth term of series solution; 

m, mean ; 
T uniform wall temperature boundary 

condition; 

K wall. 

Superscript 

T, transpose of a vector or a matrix. 

INTRODUCTION 

THE ROLE of a gas turbine engine with a regenerator 
is becoming increasingly important for vehicular and 
industrial applications. A highly efficient, low volume, 
low cost regenerator is a necessity for obtaining 
superiority over reciprocating and diesel engines. 

The first generation of vehicular gas turbine regene- 
rators employed heat-transfer surfaces of triangular 
flow passagegeometry. However, due to manufacturing 

processes, some of the flow passages of such a regene- 
rator have rounded corners or a sine shape geometry, 
instead of the idealized uniform triangular shape. The 
second generation of vehicular gas turbine regenerators 
may employ rectangular flow passage geometry, 
because the rectangular flow passage geometry is 
superior to triangular passage geometry from a heat 
transfer and flow friction point of view. However, the 
flow passages, instead of being ideal rectangular, may be 
trapezoidal or rhombic because of manufacturing 
limitations. These considerations suggest the need for 
theoretical solutions for a variety of flow passage 
geometries. 

For a compact regenerator, the flow passages must 
have a small hydraulic radius. For the low Reynolds 
number design range of such a regenerator, fully 
developed laminar flow may prevail along most of the 
flow length. Thus, fully developed laminar solutions 
are needed. The determination of such solutions for an 
arbitrary duct geometry is the subject matter of this 
paper. 

Hydrodynamically and thermally fully developed 
laminar flow is analyzed for a Newtonian, constant 
property fluid flowing through a duct of arbitrary 
but constant cross-section (Fig. la). Forced convection 
heat transfer is considered under a constant axial wall 
heat-transfer rate per unit length and arbitrary peri- 
pheral thermal boundary conditions. 

Eight methods have been used in the literature to 
analyze the aforementioned class of problems for 
circular and noncircular ducts: (1) the analogy method; 
(2) the complex variables method; (3) the conformal 
mapping method; (4) the finite difference method; (5) 
the point-matching method; (6) the least-squares- 
matching method; (7) variational methods; and (8) 
methods for small aspect ratio ducts. These methods 
are described in some detail by Shah and London [ 11. 

Boundary r I+-- 20-4 

(0) (b) 

Cd) (e) 

FIG. 1. (a) Duct of arbitrary cross section; (b) isosceles triangular duct; (c) equilateral 
triangular duct with rounded corners;(d) sine duct; (e) rhombic duct; (f) trapezoidal duct. 
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Also, some or all of the results fRe, NuH1, Nun2 and reflections to obtain a least-squares solution of equa- 
Nur obtained by these methods are presented in [l] for tion (1). This method is described below. Golub’s 
twenty-five different duct geometries. The approximate method is much less susceptible to trouble from 
methods (5) and (6) outlined above are powerful, roundoff errors and works for the “ill-conditioned” 
computationally fast and accurate to any desired degree matrix where the classical method of least-squares 
for the axially constant heat flux boundary conditions. based on the “normal equation” approach would fail. 

As is demonstrated later, the application of boundary The properties of Householder reflections are 
values to fully developed laminar flow velocity and described in the Appendix. By successively multiplying 
temperature problems reduce to the form of solving the 
matrix equation (1). In the point-matching method, the 

equation (1) by Householder reflections Pj, j = 
1,2,. . , n, the matrix A is transformed into an upper 

number of boundary points chosen for the solution triangular matrix U which has at least some nonzero 
equals the number of unknowns _yi In contrast, for the elements only on top of the main diagonal, all elements 
least-squares-matching method, a larger number of below main diagonal being zero. Essentially, equation 
boundary points are chosen for a better match of the (1) reduces to 
curved or sharp cornered boundaries. Hence, the latter ux = w (3) 
method is preferred for ducts with such boundaries. 

Sparrow and Haji-Sheikh [2] proposed such a 
where 

method of least-squares-matching of boundary values U=QA, w=Qy (4) 
for ducts of arbitrary cross-section. They employed the and 
Gram-Schmidt orthonormalization procedure for the 
least-squares approximation. However, after experi- 

Q=P “... Pj...P2P,. (5) 

encing difficulties with the Sparrow and Haji-Sheikh To solve this upper triangular overdetermined system 

method, an alternative method was devised. This pro- of equation (3) let 
posed method employs a different, numerically fast and 
more accurate least-squares approximation due to 

0 = first n rows of U (6) 

Golub [3]. and 
After the Golub method is described, the velocity and 

temperature problems are formulated, followed by the 
ik = first n elements of w. (7) 

comparison with the Sparrow and Haji-Sheikh method. Thus 0 is an n x n square upper triangular matrix and 
The application of the method is then made to analyze I is an n-vector. 
laminar fluid flow and heat transfer through isosceles 
triangular, rounded corner equilateral triangular, sine, 

XJx=* (8) 

rhombic and trapezoidal ducts. These geometries are can be solved exactly to determine unknown xj by the 
delineated in Fig. 1. Finally the important aspects of the back substitution process of Gaussian elimination 
numerical results are discussed from a heat exchanger method [4]. Employing the orthogonal property of the 
designer’s viewpoint. Householder reflection, it can be shown that the 

unknowns xj obtained by solving equation (8) repre- 
THE GOLUB METHOD sents a least-squares approximation and the error E of 

The velocity and temperature problems, described equation (2) reduces to 
below for the laminar flow forced convection heat 
transfer, reduce to solving of the matrix equation. 

E = w;+i+ t-w;. (9) 

Ax = y (1) 
These residues are printed as a part of the computer 
output in the form Ai, AZ, etc., as defined later, to 

where x = (xi,. ..,xj,.. .,x,)r is a vector whose establish the accuracy of the least-squares approxima- 
elements are to be determined. These xj correspond to tion. 
the unknown series coefficients ao, aj and bj for the VELOCITY PROBLEM 

velocity problem, or co, cj and dj for the temperature 
problem. Them x n matrix A consists of elements which 

Consider a steady state, fully developed laminar flow 

are harmonic polynominals associated with the un- 
in a duct of constant cross-sectional area (Fig. la). The 

knowns x> The vector y = (yi, . . . , yi,. . , y,,JT is known 
fluid is idealized to have p. p, cp, k all constant. In the 

for the m specified boundary points on the duct 
absence of body forces, the applicable differential 

periphery. As mentioned above, for m > n the exact 
momentum equation is 

solution to overdetermined system of equation (1) is 
not expected. The desired solution is the one which 
minimizes error E as defined below, between exact yi and 
calculated yi,c. 

The boundary condition is 

E = F Cji-yi,,)’ = “,i” IIAx-YII~. 

u =0 on I. (11) 

C-4 
i=l 

By applying the transformation 

Choosing x to minimize E is called “the method of 
2 

least-squares”. Golub [3] employed Householder 
_?=a*_’ (12) 

Cl 4’ 
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equation (10) is reduced to Laplace’s equation 

v%* = 0 (13) 

with the boundary condition, equation (1 l), expressed 
as 

u* = $14 on l-. (14) 

Here the suffix i denotes the value of a point on the 
duct boundary r. This velocity problem, after the 
indicated transformation, is a Dirichlet problem and 
has a unique solution. 

The algebraic-trigonometric (harmonic) polynomials, 

rjcosj0(j = 0,1,2,. J, r’sinj&j = 1,2,. . .) (15) 

which individually are the solution of Laplace’s 
equation, are chosen for the general solution of 
equation (13). As the Laplace’s equation is linear and 
homogeneous, the general solution is represented by the 
sum of such N polynomials. 

U* = ~0 + f r’(ajcosjO+bjsinj6) (16) 
j=l 

where ao, aj and bj are arbitrary constants to be deter- 
mined as discussed below. 

To apply this solution to the laminar duct flow 
velocity problem, it must satisfy the boundary condi- 
tion, equation (14), thus 

N 

~0 + 1 ~(ujcosjf?i+bjsinjOJ = z. (17) 
j=l 

Equation (17) represents a,,, aj and bj, a total of 
n = 2N + 1 unknown coefficients. The values of ri and 
Bi are provided form points on the boundary r so that m 
equations are available for n unknowns. The problem 
essentially reduces to that of solving equation (1) with 
proper elements of the matrix A and the vector y from 
equation (17). These unknown coefficients are deter- 
mined by Golub’s method described earlier. A closed 
form solution for the velocity distribution is subse- 
quently obtained by combining equations (12) and (16) 
as 

u --= 
Cl 

- G + 00 + ; r’(ajcosjO+bjsinjO). (18) 
j=l 

The flow parameters of interest, urn, &(a), &(co), 
K(co), I& and fRe, are computed from the following 
definitions or working formulae [ 1,2]. 

--=- (19) 

(21) 

D,2/2 
fRe =(-l&/c,)’ (23) 

py = bJm,Ju,)*- l-K(m) 
4fRe 

(24) 

SHAH 

where u/u,,,, from equations (18) and (23) is given by 

U _=-- + ~0 + F r’(ajcosjO+ bjsinj8) (25) 
%I k=l I 

In the numerical evaluation of aforementioned 
quantities, it is essential to know the accuracy of the 
approximate solution. As Laplace’s equation is being 
considered, themaximum error (if any) will occur at the 
boundary points. As these points are matched by a 
least-squares approximation, the RMS deviation A2 of 
boundary values 

II mr-2 

- i r$(ajcos jf$ + bjsin jSJ * I’* (26) 
j=l II 

is computed to determine the degree of precision for the 
velocity profile. From equations (25) and (26) it can be 
seen that AI, defined by 

AI = %A2 
h 

(27) 

compares with u/u,, the latter being the order of unity. 

TEMPERATURE PROBLEM 

In addition to idealizations made for the velocity 
problem, consider no axial heat conduction, viscous 
dissipation and thermal energy sources within the fluid. 
Also neglected are the mass diffusion, chemical re- 
action, and change of phase effects. The applicable 
differential energy equation for laminar hydro- 
dynamically and thermally developed flow is 

The associated thermal boundary condition is con- 
sidered as axially constant heat-transfer rate per unit 
duct length, with peripherally arbitrary variation in 
temperature or heat flux. For this boundary condition 
and fully developed flow, it can be shown that 

at dt, q”P _=_= 
3Z dz PA,’ 

(29) 

Substituting equations (29) and (25) into (28) yields 

V’T = aa - G + i rj(ajcosjB+bjsinjf3) (30) 
j=l 

where 

t 

T = (SfReq“/kD~) ’ 
(31) 

Equation (30) is now reduced to Laplace’s equation 
by considering the solution of the form 

T = T*+Tp (32) 

where the particular solution Tp is found as 

Tp=ao;-&+; j= 1 &@jCOSjH+ bjsinjt?), (33) 
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which satisfies equation (30). Substituting equation (32) 
in (30) yields Laplace’s equation 

-=-- j~~djcosj~-c~sinj@) 

vV* = 0 > (34) 

with the general homogeneo~ solution as 
-~~~OOS~e-ujSi~~e) , 1 (41) 

T* = cO -t f rj(cicosje+djsinj8). (35) 
The peripheral local and average Nusseit numbers are 

j=l 
evaluated from 

The coefficients co, cj and dj are determined by the 
least-squares method from the imposed ~ripheral 
boundary conditions such as (i) peripherally prescribed 
surface temperature, or (ii) ~ripher~ly prescribed wall 
heat flux. The case of an arbitrary combination of 
peripherally prescribed temperature and wall heat flux 
can be analyzed in a straightforward manner from the 
results of the above cases (i) and (ii) [5]. Now attention 
is directed toward the specific solutions for the fore- 
going two ~ri~heral boundary conditions. 

Perjpber~~~~ Fres~~~bed s~r~~~e ~ern~erutu~e 

= T* = T(ri,f?J- Tp(ri, &) 

The surface temperature of the duct periphery is 

(36) 

where co, Cj and di are n = 2N+ 1 unknowns. For M 

prescribed as t(ri,Oi). Applying equation (32) at the 
boundary points, one gets 

CO + i rf(cjcosj& + djsinj@i} 

prescribed boundary points and for m > n, equation 
(36) represents a linear least-squares problem, identical 

j=l 

where 

1 
t w,m = -* 

s pr 
t(ri, Qds. (44) 

A special case of above generalize peripheral 
temperature variation is the peripherally constant wall 
temperature, t(ri, tJ) = t,,, = a constant, corres~ndin~ 
to the @ boundary condition. The foregoing analysis 

(45) 

remains the same; except for convenience, T in equa- 
tion (31) is redefined using (t-t,) in place of t. 

The boundary RMS error, designated as &, for the 

Correspondingly, T(ri, BJ = 0 in equation (36), the 1.h.s. 

@ temperature problem is calculated from 

of equation (37) represents (&,, - tW) instead of & and the 
Nusseh number expression of equation (43) becomes 

$r ~(~jcosj~~+djsinjej) 2 I> “‘. (46) 

to the velocity problem, and is solved using Golub’s 
method. Once the unknown coetEcients are dete~ned, 
the closed-form solution for the tem~mture distribu- 
tion is found by substituting equations (33) and (35) 
into equation (32). The other parameters of interest, 
tm, qg and Nu, and Nu are computed as follows: 

-i=.....- (37) 
_I__ 
k 0; 

where from Fig. l(a) 

and from ~uatio~s (32) and (3 I), 

x {~j~osje+~~sinje) , I (40) 

For this problem, the heat flux around the duct 
periphery T’ is specified as q”(r,, SJ = 4;. This heat flux 
is related to the fluid temperature gradient at the wall 
by equation (38). Substituting the values of at/& and 
~~/ae from equations (40) and (41) in eq~tions (38) 
and after rearrangement, one finds that 

i [cjcit;i-‘(,’ cOsjf& - m’r, sinjo,)) 
j=l 

+ dj{jr;j-“(I’sin j~~~rn’r~cosjei)~ J 

X [“jII’U-t-2)Gosjei-m;irisiujBij 

+ bj (I’(j+ 2) sin~e~+m~r~cOs~ei~], (47) 

where 
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Equation (47) represents cj and dj as unknown coeffi- 
cients, a total of 2N, and are evaluated by the least- 
squares method. Subsequently, the closed form tem- 
perature distribution is obtained from equation (32) 
at the boundary points (rirOi). The fluid bulk mean 

temperature and peripheral local and average Nusselt 
numbers can readily be computed from their defini- 

tions 
Note that the coefficient c0 in equation (35) for this 

Neumann problem cannot be determined. The solution 
to this problem is unique only within an arbitrary 
constant. This constant can only be determined from an 

additional physical constraint such as the specification 
of magnitude of temperature at one point on the wall 
or in the flow field. However, for the determination of 

Nu, the value of c0 is not needed, as it cancels from the 

equation. 

Consider the special case of yi = q” = a constant. 
This corresponds to the @ boundary condition. For 
this case, t, is evaluated from equation (37) and t,,, 
from equation (44), and NuH2 from the following 
equation which is based on equation (43). 

NuH2 = ___-~- 

1 _ 
s p I- 

The boundary RMS error A.4 for the @ tempera- 
ture problem is determined from 

1.2 

(51) 

where qi represents the r.h.s. of equation (47) and q,,cal 
denotes the 1.h.s. of equation (47) with cj and (lj calcu- 
lated by the least-squares technique. 

COMPARISON WITH SPARROW AND 
HAJI-SHEIKH’S METHOD 

As mentioned earlier, the least-squares-matching 

methods are powerful and highly accurate results can 
be obtained for fully developed laminar forced convec- 
tion in a constant cross-section duct. Sparrow and 
Haji-Sheikh [2] were the first investigators to apply 
such a method to the above problem. They employed 
the well-known Gram-Schmidt orthonormalization 
technique for the least-squares approximation. How- 
ever, other numerically fast and more accurate least- 
squares approximation methods exist in the literature. 
One such method due to Golub is employed in the 

present paper. The following comparison presents 
where exactly the improvement over the Sparrow and 
Haji-Sheikh (SH) method is obtained. 

As a technically interesting application of the fore- 

going method, the triangular, sine, rhombic and 
trapezoidal ducts of Fig. 1 were investigated. A double 
precision program was written in Fortran IV-H 

language for IBM 360/67 and 370/145 computers. All 
the details of numerical computations and the 

computer program are presented in [S]. Some salient 
points are summarized below. 

Area integrations ofequations (19) (20) (21) and (37) 

were evaluated using the NewtonCotes 7-point closed 
type composite integration formula [4]. The contour 
integration, to evaluate t,,,, was performed using the 
trapezoidal composite integration formula: because 

this method is believed to be more accurate for a closed 
contour than the higher order Newton-Cotes formulae. 

A total of 83 to 91 points were taken along the 
boundary of the ducts considered. N in the series 
solutions was specified from 30 to 40 with 40 used for 
the most ducts. 

The SH method employs the Gram-Schmidt ortho- Important geometrical properties and numerical 
normalization technique to generate othonormal func- results obtained for flow and heat transfer are 
tions mY These @j are calculated as an intermediate summarized in Tables l-5. Some of these results are 
step and are not needed once the unknown coefficients also presented in Figs. 2-5. For completeness, results 
xj are determined. Hence, the SH method utilizes more for the limiting duct geometries of 2b/2u = 5 and 0 
computer time and storage and has more roundoff from [l] are included. Note that when 2u = 0 (see 
errors than the present more direct method. Addi- Fig. l), the trapezoidal duct reduces to an isosceles 

tionally, in the SH method, equidistant points on the triangular duct. Also included is Nur for the isosceles 
boundary r are required for a contour integration triangular and sine ducts from [6] and [7] respectively. 

around the boundary for the determination of @) In 
the present method, equidistant points are not a 
requirement. 

The SH method employs real and imaginary parts 
of the complex variable 2” = (stiy)“. in Cartesian 
coordinate system with N = 0 to 8, for the general 

solution of the Laplace equation. To obtain 1 per cent 
or better accuracy in final results, the first seventeen 
functions (n = 2Nf 1 = 17) are insufficient for the 

ducts presently considered. Even though the higher 
harmonic functions (N > 8) can be determined by a 
complex algorithm, it is a cumbersome task to deter- 

mine the other required functions for the SH method 

for higher values of N. The present method employs 
real and imaginary parts of a complex variable Z” in a 

cylindrical coordinate system with N varying from 0 to 

40; but with no difficulties for even higher order 

functions (N > 40). Additionally. in the SH method, 
each harmonic function contains positive and negative 
terms of x’ and y having large powers for large N. 
Computationally, this increases roundoff errors. In the 
present method. roundoff errors are minimized because 

(1) the use of the cylindrical coordinate system and (2) 
the trick of adjusting the size of each duct geometry to 

D,, = 2. 
The accuracy obtained in the results by the present 

method is discussed in the following section, where 
also is indicated that a further refinement in the least- 
squares solution may be obtained by the Chebyshev 

method [ 121. 

NUMERICAL RESULTS FOR TRIANGULAR, SINE, 
RHOMBIC AND TRAPEZOIDAL DUCTS 
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Table 1. Isoscdes triangular ducts geometrical, flow and heat-transfer characteristics for fully developed Laminar flow* 

--_.. I..-. I*“_. - .___ ___ .-.__ _ ..^ 
s*o”oo 7:15 2.66667 - 3.000 1.600 3.086 2.971 .104x 12.000 0.943 2,059 

“4’;:: 

.835Y2 

20.00 ;04.g . 

2.593 
1.90501 

2.805 2.521 .0648 I .46 2.348 0.0039 - 
-74009 2.521 :‘ii*,z . 2.731 2.409 .059u ; $*;Tg . 1.61 

1.33333 
2.44& 

.64240 
0.080 

2L3h 2.442 1.505 ?..64O 2.271 .0533 12.636 1.81 2.575 0.173 4,14 - 
0.94521 .55282 2.368 I.4RT 2.546 2.128 .0484 12.822 2.00 2.722 0.366 4.07 - 

2.000 2R.07 0.66667 .46729 
1.066 30.00 

2.302 1.459 2.454 1.991 *Of+43 
0.62201 1:1.026 2.22 .45102 0.747 2.290 I.455 t l 966 .O436 lY.OBS 2.26 . 

I *SO0 36.87 
%.438 1%: 0.851 ?i% l 

0.50000 
s.7” 

.40140 1.374 2.259 40.00 1.443 1.898 +0418 2.36 0.45791 2.392 13*!81 2.998 1.22 

1.072 50.00 
.30215 2.249 1.43Q .0412 

0.35742 2.377 2.39 3.029 .33033 
3’:: 

2.228 
; l g3’; :% 

1.431 2..347 l .(I401 
@fj$ 

l 2.45 3.092 :*“7:: . 2:53 .469 

1.000 5-I. 13 0.33333 i%:: . *31641 2.225 67.38 co*00 1.430 0.28868 0.25000 

:z?E “,‘Z9 i’*4$;: l 

2.342 3.338 1.824 .OY99 1.818 l 03Y8 13.333 13.321 2.47 2.46 3.102 3.111 1.R92 1.82 2.41 1.79 .51S -483 

0.714 70.00 0.23tSO3 a:227 2.342 1 r824 .0399 13.321 2.45 
-25364 

?~~~ it84 1.99 
0.596 1.431 2.345 1.829 .OYOO 15.311 2.45 * 80 roe 0.1 Y863 I.80 2.04 :% 

.223 13 2.241 1.436 2.366 1 .X60 .0408 13,248 2.40 3.050 1.59 2.19 .432 

0.400 90.00 0.16667 0.299 .I9584 2.264 120.00 0.09623 .I2552 2.3RO ; l w+; 2.400 1.909 .0421 2.34 2.982 1.34 2.30 
. 2.571 2.165 r0490 

:z*:fE ,364 
. 

0.250 126.87 
2.00 2.680 

0.08333 
0.62 2.45 

.llOF(5 
.16? 

2.416 2.235 
ii’:% . 150.00 151.93 

1.499 12.622 1.90 
0.04466 0.04167 

2.603 
.06301 .05807 2.5”7 

t’s .L 
ii*:;: l 2.543 :%Z 12.226 1.50 2.325 0.156 0.490 ii*4567 . 

2.574 
,131 .045 

Z.h”t, 2.a35 .OhS9 12.196 1.47 2.302 0.136 2.65 l 038 

0 lBO.00 0.00000 .oooon 3.000 l.hOO 3.086 2.971 .I048 IlrOrJO 0.943 2.059 0 

* PJ2a = 1 -t ,/I[ 1 + (Zb/&j, AJ(2a)2 = b/2a. 
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FIG. 2. Isosceles triangular and sine ducts K(W), L,$ and fRe for fully 
developed laminar flow. 

Table 2, Rounded corner equilateral triangular ducts 
geometricaf, flow and heat-transfer characteristics for fully 

developed Iaminar flow 
~-. ~---. 

0 rounded 1 rounded 2 rounded 3 rounded 
corner corner corner corner 

.--.-- 
R/2a 3G+xiOO 2.77172 2.54343 2.31515 
A,lC@ 0.43301 0.41399 0.39497 0.37594 
4/2a o-57735 0.59745 062115 0.64953 
.iGa 0*28868 0.26778 0.30957 0.28868 
Bm.x/2a 0.28868 0.28627 0.29117 0.28868 

%ilxi &iO m 2.222 2‘172 2.1 IS 2.064 
1.429 1.406 1-379 1.353 

-Ke(CQf 2,338 2.254 2.163 2.074 
K(col 1.818 1.698 1567 1.44i 
fl;ie L+ 13.333 00398 14,057 0.0359 14.899 0.0319 15993 0.0284 

NUH~ 3,111 3401 3.756 4.205 
NW 1.892 2,196 2.715 3.780 
t* W.mpX 1.79 2.03 2-42 1.22 
&nin 051.5 0.412 O-550 0.757 

---- 

The coefficients in equations (l?), (35) and (47) for the 
velocity and temperature problems and the RMS 
errors AI to A4 are reported in [5].* 

Except for the rhombic ducts, the max~um velocity 
does not occur at the centroid of the cross-section, but 
rather occurs on the axis of symmetry away from the 
centroid. The distance 3 of the centroid and j&,x (where 
the maximum velocity occurs), both measured from the 
base, are also reported in these tables. 

The wall temperature around the duct periphery is 

*The coe~c~ents &, of equation (18) and dj of equation 
(35) are zero for a duct symmetrical about one axis and when 
B is measured from the axis of symmetry. The coefficients 
aj for the velocity problem and c, for the @ and @ 
temperature problems are determined for the rectangular, 
isosceles triangular, rounded comer triangular, sine, rhombic 
and trapezoidal ducts. They are deposited as Document No. 
NAPS 0246 4 with the National Auxiliary ~blicatio~s 
Service, c/o Microfiche Publications, 440 Park Avenue 
South, New York, NY 10016. 
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Frc. 3. Isosceles triangular and sine duets Nltwt , NuK2 
and Nu, for fully developed laminar flow. 

ild I 1 r I I I 1 I I 1 I f / I I I r 1 I 

0 0.2 0.4 0.6 0.8 i.0 @8 0.6 0.4 O%? 0 

a’ 

FIG. 4. Trapezoidal ductsf’h and K(tu) for Mly developed 
laminar Row. 

3.2 

28 

2-4 

2.0 

I.6 : 

________-I--- s 
I.2 

a’ 

FIG. 5. Trapezodial ducts hbHl and NuH2 for fully 
developed laminar flow. 

nonuniform for the@ boundary condition. A hot spot Xr I order to assess the accuracy of the present method, 
occurs at one of the corners of the ~~ncirc~ifar duct talc ulations were also made for rectangular ducts with 
and a cold spot occurs on one of the sides. The aspr xt ratio varying from 1 to & Some of these results 
~orres~~di~g dimensionl~s rn~irn~ and rn~nirn~ are presented in Table 6 [l,S]. The ~~=~~~, &(a), 
wall temperatures, t&,,,, and t&min, are presented in UC o), K(co), f&, fRe and kNt results presently 
Tables 1-6. dete rmined for all the rectangular and the equilateral 



Table 4. Rhombic ducts flow and heat-transfer characteristics for fully developed laminar flow 
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Table 5. Trapezoidal ducts geometrical, flow and heat-transfer characteristics for fully developed laminar flow 

m 1.90501 .74009 2.521 1.526 2.731 2.409 .0590 12.474 2.446- 0.08 - 
: 1.43804 1.074*7 :3:“,:,” 2.025 2.185 :*3363: 2.147 1.557 .0318 :z% 4.366 1.22 - 

2.008 1.343 .0262 . 2.54 .297 
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4/3 .52173 .52482 2.091 1.377 2.149 1.543 .0320 14.312 3.636 3.05 1 r52 .687 

1 .41413 .42131 2.096 1.379 2.155 1.552 .0324 14.235 3.608 3.05 1.55 .716 
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:X4 
15.676 4.175 2.98 1.64 .47R 
18.297 5.363 2.91 1.87 .305 

l/F! .06094 .00116 1.627 1.245 1.683 0.875 .00936 20.599 6.501 2.85 2.18 .lQO 
0 1.500 1.200 1.543 0.686 .00588 24.000 8.235 - - 

0 = 750 

m .6220 1 .45102 2.290 1.455 2.438 1.966 .0436 13.065 2.910 0.851 3.73 .lP7 
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i/4 .25257 .30261 .32029 .26619 2.063 2.OQ9 1.381 1.370 2.121 2.163 1.502 1.563 .02YR .“323 :zz :*:6”: 2.82 2.81 1.79 1.78 .533 .612 
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m = 600 
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$ = 450 
m .16667 . lY584 2.264 1.445 2.400 1.909 .0421 :z*:,“: 2.982 1.35 .364 

8 :: z:: . 1 Y575 p;g,H 1.442 f%T :*R87963 .0414 
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l/2 .lllll .12495 1.998 1.367 ‘2%:: . 1.464 15.206 3.888 1.44 2.35 .23h 
l/4 .07778 .08333 1.787 1.303 1.875 1.142 

:;::: 
17.397 4.543 1.55 2.46 

l/8 .04815 .05000 1.652 1.266 1.737 0.943 .00996 19.743 6.034 1.61 2.65 ::;2” 
0 1.500 1.200 1.543 0.686 .005RR 24.000 8.235 - 

-a = 300 
m .09623 .12552 2.380 1.4”Q 2.571 2.165 .0490 12.744 2.680 .621 2.45 .167 

: .0’)541 .09600 : 3:%3;13 ’ 2.375 2.371 I 1.484 .4*4 2.555 2.558 ?.141 2.146 .0489 .0485 12.760 12.782 z*“7:1 . .625 .624 2.45 2.44 ,164 .I63 
2 .09351 .12170 2.352 1.482 2.540 2.115 .0465 12.875 2.736 .622 2.44 .146 
4/3 .09105 .11676 2.310 1.468 2.486 2.038 .0442 13.012 2.821 .635 2.44 .141 

1 . OR834 .11121 2.266 1.457 
3/4 .08459 .10397 2.200 1.441 ;*g; . 

1.969 .0408 13.246 2.919 .640 2.46 
1.864 .0363 13.599 3.077 .052 2.47 ::33’ 

:s :zE .09148 .06699 t ‘%Z 14.323 3.436 
l/8 .04103 .04361 1:272 

2.229 1.988 1.651 1.288 .0287 .0174 .744 .685 2.55 2.83 .126 .103 
1.768 

“o%iz . 
.0112 :86% . “5*“,;9 . .888 2.89 .ORO 

0 1.200 1.543 .00588 24.000 8.235 - - 

Table 6. Rectangular ducts [C#J = 90” in Fig. l(f)] flow and heat-transfer characteristics for fully developed 
laminar flow 
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triangular ducts differ by less than 0.01 per cent when 
compared to the best literature values [ 11. Correspond- 
ing values for isosceles triangular ducts, Table 1, are in 
excellent agreement with Sparrow and Haji-Sheikh’s 

results [S]. The Table 3 results for sine ducts are in good 
agreement with the limited results obtained by Sherony 

and Solbrig [7] using a finite difference method. 

NUHl for the rhombic ducts are within 0.1 per cent 
of those by Iqbal et al. [9]. From these comparisons 

and knowing the values of Al, A: and A3 are less 

than lo-’ for most of the ducts, it is concluded that 

the present method will provide numerical results 
accurate to within 0.05 per cent for those ducts with 
straight boundaries or those not having very narrow 

corner regions and within 1 per cent for those ducts 
with sharp curved boundaries or those having very 
narrow corners. 

The only literature values available for NuH2 are for 
square and equilateral triangular ducts [lo], rect- 

angular ducts, and rhombic ducts with 90” < 4 < 60” 
[l I]. Values obtained using the proposed method are 
within 0.3 per cent of these literature values. The 

accuracy for NuHZ is not as good as for NuHl because 

of the “differentiation process” involved in the 

boundary values of the fluid temperature, equation (38). 
The accuracy can be improved, if desired, by some of 

the suggestions in [5]. From the foregoing com- 
parisons, and knowing 10m3 6 A4 < lo-‘, it is con- 

cluded that the NuHZ results are accurate with 1 per 

cent for those ducts with straight boundaries or those 
not having very narrow corners and within 5 per cent 
for those ducts with sharp curved boundaries or those 
having very narrow corners. 

A further refinement in the least-squares solution 

may be obtained by employing the Chebyshev method 
[12] instead of the Golub method. The Chebyshev 
method checks the error of all boundary points 
individually and minimizes the maximum error of any 

boundary point. The Golub method minimizes the sum 
of squares of errors of all boundary points. 

DISCUSSION ON INFLUENCE OF 
PASSAGE GEOMETRIES 

Two preliminary questions involved in a new heat 
exchanger design are (1) how to compare the per- 
formance of different idealized passage geometries and 
(2) if the actual passage geometry differs markedly 
from the idealized passage geometry due to manu- 
facturing process, how to assess these effects on heat 
transfer and pressure drop. 

Comparison of difSerent idealized passage geometries 
The performance of heat exchanger cores made up of 

different idealized passage geometries may be com- 
pared in the following two complimentary ways: (1) 
comparing the flow area “goodness” factors j/f: and (2) 
comparing the core volume “goodness” factors ktd vs 
E std. 

It can be shown that the flow area goodness factor 

j/j’can be expressed as 

(52) 

From the first equality in the above equation, j/f is 
constant for fully developed laminar flow of a specified 
fluid. From the second equality, this area goodness 

factor derives its name as it is inversely proportional to 
A: (A, = core free flow area) for the bracketed 
quantities being constant. The dimensionless j and f 
factors characterize the shape of geometry and are 
independent of the scale of the geometry (D,,). Hence, 

the area goodness factor j/‘f‘ for different surfaces, 
when compared, represents the influence of the 
differences in nondimensional geometric factors. jHl/fis 

presented in Fig. 6 for the rectangular, trapezoidal, 

0.39 , , , , , , , , , , , , , / , / , / , 

._j ‘L I 

0.20 0'.20/2b 
0.19 1 ' ' ' ' 1 ' ' 

0 0.2 0.4 0.6 0.8 I.0 06 0.6 0.4 0.2 0 

d 

FIG. 6. Isosceles triangular, sine and trapezoidal ducts j,,/f 
for fully developed laminar flow. 

sine and isosceles triangular ducts. This factor ranges 
from 0.265 (equilateral triangular duct) to 0.390 
(parallel plates). Thus the parallel plates geometry, 

relative to the equilateral triangular duct, presents an 
improvement of 47 per cent (= 0390/0.265 - 1) for j,,/lf 
and consequently requires an 18 per cent (1 - l/41.47) 
smaller free flow area. Very sharp cornered isosceles 
triangular ducts (a* ‘v 0) have the poorest flow area 

goodness factor (jHl/’ = 0.195). 
The exchanger porosity must be considered in order 

to translate this free flow area advantage into a frontal 

area improvement. Note that in the flow area “good- 
ness” factor comparison, no estimate of total heat- 
transfer area or the volume can be inferred. This is 
the function of the volume “goodness” factor to be 
described below. 

The core volume “goodness” factor is characterized 
by a high position for the plot of btd vs &d, where 

htd = $ Nu = f$$ +jRe, (53) 

Estd = !% = 2 
PA 

2i> i.Pe3. (54) 
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From the first equality in equation (53), htd is constant 
for fully developed laminar flow through a constant 
cross-sectional duct. The expr~sion for E&d in equation 
(54) rigorously applies to a constant density fully 
developed laminar flow. For such a flow, Ap is propor- 
tional to W, hence &d is proportional to W2. Unlike 
the j/f factors, &d and .&d are dependent upon the 
scale of the surface geometry as found from equations 
(53) and (54). Hence, for comparison of different 
surface geometries, a common hydraulic diameter 
Dh = OGO2 ft (061 mm) is used to eliminate the influence 
of geometrical scale. Also the physical properties* 
employed in equations (53) and (54) are for dry air at 
one atmosphere pressure and 500°F (26o”C), a standard 
set of conditions. 

The dimensionless heat transfer in a heat exchanger 
is measured by the exchanger effectiveness which in turn 
depends upon N,, for fixed flow rates. In a “balanced” 
heat exchanger, the thermal resistances of both sides of 
a heat exchanger are of the same order of magnitude; 
hence N,, is proportional to hA or &A. Thus, the 
higher &d for a specified I&, the lower is the heat- 
transfer area A requirement for the specified exchanger 
effectiveness; and as A = al/ = (4p/D3V, for a fixed D,,, 

the smaller is the heat exchanger volume for a given 
porosity, p. 

As h& is constant for fully developed laminar flow 
and does not vary with &$, it is plotted against the 
aspect ratio c1* in Fig. 7 to cover the entire family 
of rectangular, trapezoidal, sine and isosceles triangular 
ducts. From this figure, it can be seen that htd varies 
from 23.6 to 101.2 Btu/(h ft’“F) (a factor of 4.3); and 
ktd = 382 Btu/(h ftzoF) for the equilateral triangular 
duct.* Thus the parallel plates heat exchanger would 
require 62 per cent (l-382/101.2) less heat-transfer 
area compared to the equilateral triangular heat 
exchanger. Additionally, if both the exchangers are 
designed for the same ,!&d and W, the parallel plate 
heat exchanger will also have 62 per cent less pressure 

0 @2 0.4 0.6 08 I.0 0.8 0.6 @4 Q2 0 

d 

FIG. 7. Isosceles triangular, sine and trapezoidal ducts htd 
for fully developed laminar flow (based on@). 

*Pr = O-680; p = 006748 l&/h ft; cp = 0.2476 Btu/l&‘F; 
k = 0.02458 Btu,Jh ft “F; p = 0*04132 lb,/ft3. 

* 1 Btu/(h ft’ “F) = 5678 W/(m2K). 

dmp. It should be pointed out that the effect of flow 
area and volume goodness factors is not necessarily 
cum~ative. If the above advantages in A, V and Ap 
are to be realized simultaneously, the required free flow 
area for parallel plates will be larger, From equation 

(54), 

(55) 

Heice, the parallel plates heat exchanger would require 
a 34 per cent [J{1/(1.47 x O-377)) - 11 more free flow 
area, and for the same porosities, a 34 per cent more 
frontal area than the equilateral triangular matrix. 
However, for a common pressure drop (not the same 
&d), the previous gain of the 18 per cent reduction 
in frontal area would still apply along with the 62 per 
cent reduction of volume for parallel plate heat 
exchanger for the same W, N,, and p. 

From the foregoing view~ints, the rectangular duct 
family with a* < O-25 appears to be most promising 
from Figs. 6 and 7. However, the isosceles triangular 
or sine duct surfaces are more readily fabricated relative 
to tl* < 0.25 rectangular duct surfaces. A practical 
attempt to fabricate the latter surface for a regenerator 
is the so-called deepfold rectangular passage (2b/2a = 8) 
surface. Theoretically, it has j&f = 0359 and &, = 
79.8 Btu/(h ft’“F). However, if the passages of such a 
surface are of the trapezoidal shape with 4 = 85” due 
to manufacturing process, instead of perfect rectangles, 
a severe degradation in the performance results. The 
equivalent trapezoidal duct having the same width at 
the middle of the channel has 2b/2a = 26.7 for 4 = 85”. 
This geometry has theoretical jai/f = 0,237 and &d = 
40.0 from Figs. 6 and 7. Thus, a 5” inclination in the 
long side of the rectangular duct results in a reduction of 
34 and 50 per cent respectively in jai/f and q,, factors. 
In terms of heat-transfer area requirement, this means a 
penalty of 50 per cent. In reality, a 5” inclination may 
be excessive, but the results of Figs. 4-7 clearly 
demonstrate that the heat transfer and pressure drop 
of a deepfold surface may be very sensitive to the 
tooling used to form the passage geometry. 

~n~uence of ~e~rfurefrom ~~lize~ passage geometry 
The passage geometry of an actual heat exchanger 

core can be significantly different from the idealized 
geometry. As mentioned in the Introduction Section, 
an equilateral triangular passage heat exchanger core 
often has passages of rounded corners and sine 
geometries. The theoretical performance of such a core 
can be significantly different from that of a core with 
ideal passages. The differences in heat transfer and 
pressure drop of such a “nonuniform’ core may be 
assessed based on the method outlined by London [ 133. 

Four “nonuniform” cores are considered as examples 
to illustrate the use of numerical results presented 
earlier and to bring out the effects of idealized non- 
uniformities: (1) equilateral triangular passage cores 
having (a) 50 per cent zero rounded corner and 50 
per cent three rounded comer equilateral triangles and 
(b) 100 per cent three rounded corner equilateral 
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Reference matrix 50% O-rounded corners 100% 3-rounded 
100% O-rounded corners 50% 3-rounded corners corner possages 

(b) 

Reference matrix 50% rectangles 
100% rectangles 50% tropezoids 

(4 = 90”) (4 = 85”) 

Cd) (e) 

FIG. 8. Idealized uniform and nonuniform matrix 
results of Table 7. 

triangles; (2) 8 to 1 (2b/2a = 8) aspect ratio rectangular 
passage cores having (a) 50 per cent rectangles and 50 
per cent trapezoidal passages with 4 = 85” and (b) 
100 per cent trapezoidal passages with 4 = 85”. The 
idealized uniform (reference cores) and nonuniform 
passage geometries are presented in Fig. 8. For each 
of the four cores of (1) and (2), the heat exchanger 
frontal area, flow length, and passage mid-wall thick- 
nesses are specified to be the same as those for the 
reference cores. 

The comparisons are made considering equal flow 
rates through the nonuniform and the appropriate 
uniform (reference) cores. The basic relations for NfU 
and Ap of a heat exchanger employed are 

N,u=E=(&)(y) (56) 

Ap=f;$=(s)($$). (57) 

It is idealized that the flow is fully developed through- 
out the flow length and can be treated as at a constant 
density for the Ap evaluation. Moreover, p, cP, k, p and 
L are considered as constants. The ratios of effective 
N,,, Ap and W of a nonuniform core to the appropriate 
reference core, designated as N&, Ap* and W*, are 
presented in Table 7. The method of London [13] is 
used to determine N,, of the nonuniform cores which 
in turn depends upon N,, of the reference cores. 

Table 7. Influence of rounding of corners on an equilateral 
triangular matrix and of trapezoidal passages in a deepfold 

rectangular matrix 

Equilateral triangular Deepfold rectangular 

geometry of geometry of geometry of geometry of 
Fig. 8(b) Fig. 8(c) Fig. 8(e) Fig. 8(f) 

w* 1 1 1 1 
AP* 1.044 1.092 0.867 0.766 
NZ 0.964* 0.927 0.616t 0.505 

*Even though N,$ depends on Nru,rer, N,: is 0.964 for 
1 < Nru,ret < 20. 

tThe magnitude of Nz is 0686, 0.635, 0.623 and 0.616 
for the values of Nru,rer as 1, 5, 10 and 20 respectively. 

100% trapezoids 
(#J = 85”) 

(f) 

passage geometries for the 

A review of the results of Table 7 reveals that the 
rounding of corners of a triangular matrix has only a 
small adverse influence on the N,, and Ap of the core. In 
contrast, a severe degradation in N,, results for a deep- 
fold surface having all trapezoidal section passages with 
4 = 85”. From Table 7, a 49.5 per cent (l -@505) 
reduction (degradation) results in N,, compensated in 
part by a 23.4 per cent (1 - @766) reduction in pressure 
drop for the Fig. 8(f) geometry. 

CONCLUSIONS 

A least-squares-matching method is presented to 
analyze fully developed laminar flow and forced con- 
vection heat transfer in ducts under axially constant 
wall heat flux and peripherally arbitrary thermal 
boundary conditions. As an application of the method, 
numerical results are provided in Tables l-6 for the 
isosceles triangular, rounded corner equilateral tri- 
angular, sine, rhombic, trapezoidal and rectangular 
ducts. The influence of passage geometry on the heat 
exchanger design is shown in Figs. 6 and 7 in terms of 
flow area and volume goodness factors. It is shown that 
the rounding of corners of an equilateral triangular 
matrix has only a small effect on the heat exchanger 
performance. In contrast, if a deepfold passage 
geometry (2b/2a = 8) has all trapezoidal passages, a 
very significant reduction in the heat exchanger per- 
formance occurs relative to true rectangular passages. 
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APPENDIX 

Householder Rejlection 

An m x m square matrix P of the following form is called 
a Householder reflection 

P = +vr 

where I is an identity matrix and 

B = fllvl/2 = VTV/2 

for any vector v = (ul,. . . , QT. It can be readily proved 
that the. Househdlder re&etiti P is its own inverse and its 
own transpose and hence it is orthogonal. 

The important property of the Householder reflection is 
that for any nonzero vector g, it is possible to find a 
Householder reflection P which annihilates the desired 
elements of this vector. Consider one wants to keep 
gl,. . . ,gj_ 1 unchanged, change gj, and make gj+ 1,. ,gm as 
zero. In that case, define 

tl = sign(g.)(g?+gt+, + . . . +g’)“’ J I m (60) 

v = (O,..., 0,Bj+&$7j+1,.~.rSnJT (61) 

B=~(Sj+a) (6-V 

where sign (gj) is 1 if g, > 0 and - 1 if gj < 0. Substituting 
equations (60). (61) and (62) into equation (58) provides the 
Householder reflection Pj which when operated on g yields 
the desired vector. 

Pjg = (g, ,..., gj_,, -a,0 ,..., 0)‘. (63) 

Furthermore, if h is any vector with not all hl through 
hj_l as zero and hj through h, as zero, then Pj yields the 
vector 

P,h = h. (64) 

However, if all the elements hj through h, are not zero, 
define a constant y as 

Y = (UT&B, (65) 

then 

Pjh = h-yv. (66) 

The aforementioned property of the Householder reflec- 
tion is employed to reduce the system of equation (1) into the 
upper triangular system of equation (3). For the House- 
holder reflection PI, the vector g is considered as the first 
column of matrix A. a, v, b and y are computed by 
equations (60), (61), (62) and (65) with j = 1. The application 
of P1 on the first column of A results in its first element as 
--a and the rest as zero. The second through nth column 
and P, v are obtained by use ofequation (66). The successive 
application of Pi,. , P. results in the matrix equation (3). 
To minimize the roundoff errors in the numerical computa- 
tion, at each step a pivoting is done by choosing the column 
with the largest sum of squares of matrix A to be reduced 
next. 

It should be emphasized that the application of the 
Householder reflection P does not mean the matrix multipli- 
cation, but it means obtaining the r.h.s. of equations (60), 
(61) and (63) which at the most involves the vector inner 
product and vector subtraction. 

FROTTEMENT ET TRANSFERT DE CHALEUR EN CONVECTION FORCEE 
LAMINAIRE DANS LES CONDUITES A GEOMETRIE ARBITRAIRE 

RCsumB-Une mkthode d’optimisation au sens des moindres car& est present&e afin d’analyser l’tcoule- 
ment laminaire itabli et le transfert de chaleur dans les conduites de section arbitraire. Le transfert 
thermique en convection for&e est consid& dans le cas d’un flux longitudinalement constant avec des 
conditions aux limites thermiques arbitraires sur la ptriphtrie. A titre d’application de la mkthode, des 
rksultats dynamiques et thermiques sont pr&sent&s pour des gi?om&ies de conduites B section droite 
comprenant, des triangles isocbles, triangles qquilat&aux B sommets arrondis, sinus, losanges et trapizes. 

Ces rtsultats numtriques sont discutes en vue de la conception des ichangeurs de chaleur. 

LAMINARER REIBUNGS-DRUCKABFALL UND W.&RMEtiBERGANG BE1 
ERZWUNGENER KONVEKTION IN KANALEN BELIEBIGER GEOMETRIE 

Zusammenfaasung-Zur Untersuchung der vollausgebildeten Laminarstrbmung und des Wlrmeiibergangs 
in Kanglen beliebigen Querschnitts wird eine Methode der kleinsten Fehlerquadrate vorgestellt. Der 
WLrmeiibergang bei erzwungener Konvektion wird unter der Voraussetzung konstanten axialen Wtirme- 
durchsatzes bei beliebigen thermischen Randbedingungen an der Berandung behandelt. Als Anwendungs- 
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beispiel des Verfahrens werden LGsungen fiir StrGmung und Wgrmeiibergang fiir folgende Kanalquer- 
schnitte vorgestellt: gleichseitig dreieckig, gleichseitig dreieckig mit abgerundeten Ecken, sinusfb;rmig, 
rhombisch und trapezfiirmig. Diese numerischen Ergebnisse werden aus der Sicht des Wlrmeiibertrager- 

konstrukteurs diskutiert. 

TPEHklE M I-IEPEHOC TEl-IJIA IlPl4 JIAMMHAPHOZi BbIHY)KflEHHOti 
KOHBEKUMM B TPY6AX IlPOM3BOJIbHOfi QOPMbl 

AIIIIOT~~HS- B CTaTbe paCCMaTpsBaeTCn IIpHMeHeHlieMeTOiW HNiMeHbIIlHX KBanpa-r'oBLZnR WCne- 

LlOBaHHR IIOnHOCTblO pa3BHTOrO naMHHapHOr0 TeYeHWIl )ICAfiKOCTH If TenJIOO6MeHaB Tpy6ax npOH3- 

BOnbHOrOCWieHHII. TennonepeHoc ~~~B~~H~~~~HHOPK~HB~K~~~R~~CCM~T~WB~~TCI~~~~~~CTORHHOM 

OCeBOM Te~nOBOM~OTOK~II~pOIA3BOnbHbIX~~pW~pUYeCKHXTe~nOBbIXrp~HHYHbIXyCIIOBWRX. 

B Ka’leCTae npHMepoe npencTaaneHb1 pe3ynbTaTbI no ~pe~aI0 w TeIInOO6MeHy Am cerewd 
Tpy6bI B 4OpMe paBHO6el_lpeHHOrO TpQ'rOJlbHHKa, paBHOCTOpOHHW0 TPQ'rOJlbHHKa C 3aKpyrJEH- 

HbIMH yrnarm, a TaKxe cuHycownanbHor0, poM6wYecKoro ii TpaneqeananbHoro cereHd. ITony- 
'IeHHbIe WiCneHHbIe pe3ynbTaTbI paCCMaTpHBalOTC,l C TOYKH 3pt2HWl KOHCTpykipOBaHHR TeIIJIO- 

06MCHHWKOB. 


